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Abstract

Structure and Representation in Neural Networks

by

Daniel Filan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Stuart Russell, Chair

Since neural networks have become dominant within the field of artificial intelligence, a
sub-field of research has emerged attempting to understand their inner workings. One
standard method within this sub-field has been to primarily understand neural networks as
representing human-comprehensible features. Another possibility that has been less explored
is to understand them as multi-step computer programs. A seeming prerequisite for this is
some form of modularity: for different parts of the network to operate independently enough
to be understood in isolation, and to implement distinct interpretable sub-routines.

To find modular structure inside neural networks, we initially use the tools of graphical
clustering. A network is clusterable in this sense if it can be divided into groups of neurons
with strong internal connectivity but weak external connectivity. We find that a trained
neural network is typically more clusterable than randomly initialized networks, and often
clusterable relative to random networks with the same distribution of weights as the trained
network. We investigate factors that promote clusterability, and also develop novel methods
targeted at that end.

For modularity to be valuable for understanding neural networks, it needs to have some sort
of functional relevance. The type of functional relevance we target is local specialization
of functionality. A neural network is locally specialized to the extent that parts of its
computational graph can be abstractly represented as performing some comprehensible sub-
task relevant to the overall task. We propose two proxies for local specialization: importance,
which reflects how valuable sets of neurons are to network performance; and coherence,
which reflects how consistently their neurons associate with features of the inputs. We then
operationalize these proxies using techniques conventionally used to interpret individual
neurons, applying them instead to groups of neurons produced by graph clustering algorithms.
Our results show that clustering succeeds at finding groups of neurons that are important
and coherent, although not all groups of neurons found are so.
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We conclude with a case study of using more standard interpretability tools, designed to
understand the features being represented by directions in activation space, applying them to
the analysis of neural networks trained on the reward function of the game CoinRun. Despite
our networks achieving a low test loss, the application of interpretability tools shows that
networks do not adequately represent relevant features and badly mispredict reward out of
distribution. That said, these tools do not reveal a clear picture of what computation the
networks are in fact performing. This not only illustrates the need for better interpretability
tools to understand generalization behaviour, but motivates it: if we take these networks as
models of ‘motivation systems’ of policies trained by reinforcement learning, the conclusion is
that such networks may competently pursue the wrong objectives when deployed in richer
environments, indicating a need for interpretability techniques to shed light on generalization
behaviour.
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Chapter 1

Introduction

For the past several years, the field of artificial intelligence has learned how to train neural
networks to perform a startlingly wide array of tasks to a startlingly high degree of performance.
Well-known examples include recognizing images (Deng et al., 2009; He et al., 2016a), playing
Atari games (Badia et al., 2020; Bellemare et al., 2013) and Go (Silver et al., 2018), predicting
how proteins fold (Jumper et al., 2021), producing illustrations (Ramesh et al., 2022),
modelling human text (OpenAI, 2023), and solving high school math competition problems
(Hendrycks et al., 2021; A. Zhou et al., 2023).

As this has happened, much work in the sub-field of interpretability has been put into
understanding how these neural networks operate (Räuker et al., 2023). Several motivations
exist for this line of research (Lipton, 2018), but one is a concern about goal misgeneralization
(Di Langosco et al., 2022; Hubinger et al., 2019; Shah et al., 2022). The concern can be
put in this way: neural network architectures are expressive enough to admit a variety of
parametrizations that competently pursue various goals, in the sense of reliably acting in
ways that bring about certain types of outcomes. Furthermore, the space of goals is rich
enough that two different parametrizations can behave identically on a training set while
generalizing competently but differently in richer environments. Potential examples of this
kind of misgeneralization range from the mundane—agents trained to reach an object that is
always at a certain location in the training set will go to the location, not the object, on a test
set where those diverge (Di Langosco et al., 2022)—to the catastrophic—an agent that bides
its time during training, achieving high performance on its assigned task, until it knows it
has been deployed, at which point it pivots to achieving an arbitrary goal contrary to human
intent (which in order to achieve, it needed to perform well enough in the training set to be
deployed) (Bostrom, 2014, Chapter 8). In order to foresee and prevent goal misgeneralization,
it would be valuable to understand the computation inside a neural network, ideally resulting
in a comprehensible model of how it will behave in new situations.

To understand the computation inside a neural network, we likely will need some sort of
‘frame’: a theory of what sort of computation is likely being implemented, and which network
components correspond to which computational elements. One of the first textbooks devoted
to deep learning provides two such frames (Goodfellow et al., 2016). In its introduction, it
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provides an “Illustration of a deep learning model” adapted from work by Zeiler and Fergus
(2014) and describes it thus:

Given the pixels, the first layer can easily identify edges, by comparing the
brightness of neighboring pixels. Given the first hidden layer’s description of
the edges, the second hidden layer can easily search for corners and extended
contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden
layer can detect entire parts of specific objects, by finding specific collections of
contours and corners. Finally, this description of the image in terms of the object
parts it contains can be used to recognize the objects present in the image.

This provides a frame of ‘natural feature representation’ whereby, especially in later layers
in neural networks, the neurons (or at least some basis of the activation space) should be
thought of as representing high-level human-comprehensible features. This frame suggests
that the task of neural network interpretability is to determine what those features are.

However, the book also describes another frame:

Another perspective on deep learning is that depth enables the computer to learn
a multistep computer program. Each layer of the representation can be thought of
as the state of the computer’s memory after executing another set of instructions
in parallel. Networks with greater depth can execute more instructions in sequence.
Sequential instructions offer great power because later instructions can refer back
to the results of earlier instructions. According to this view of deep learning, not
all the information in a layer’s activations necessarily encodes factors of variation
that explain the input. The representation also stores state information that helps
to execute a program that can make sense of the input. This state information
could be analogous to a counter or pointer in a traditional computer program.
It has nothing to do with the content of the input specifically, but it helps the
model to organize its processing.

This suggests a more computational view taken by the literature on mechanistic in-
terpretability (Cammarata et al., 2020; Olah, 2022), that we should be interested in how
computation is organized in the network, what subroutines there may be, and how information
is transformed between layers. Such a view places less emphasis on activations as representing
comprehensible features of the input. Section 6.4.1 of the textbook keeps both perspectives
in mind:

Choosing a deep model encodes a very general belief that the function we want
to learn should involve composition of several simpler functions. This can be
interpreted from a representation learning point of view as saying that we believe
the learning problem consists of discovering a set of underlying factors of variation
that can in turn be described in terms of other, simpler underlying factors of
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variation. Alternately, we can interpret the use of a deep architecture as expressing
a belief that the function we want to learn is a computer program consisting of
multiple steps, where each step makes use of the previous step’s output. These
intermediate outputs are not necessarily factors of variation but can instead be
analogous to counters or pointers that the network uses to organize its internal
processing.

Broadly, this dissertation will more take the latter, more computational perspective, and
cast some suspicion on the natural feature representation frame.

However, if we are to understand neural networks in terms of multi-step computer programs
that they implement, we need some automated method to find non-trivial structure in the
weights that meaningfully corresponds to elements of the neural network’s computation. This
structure must be higher-level than single neurons or parameters to be useful, because modern
neural networks are too large for it to be practicable to inspect them neuron-by-neuron,
weight-by-weight: they have as many as trillions of parameters (Villalobos et al., 2022), and
each neuron can be connected to over 10,000 other neurons (Brown et al., 2020). However,
there is no widely-agreed-upon way of finding such structure without having already done an
interpretability analysis, or specializing to a particular distribution or input.

Modularity is a common property of biological and engineered systems (Baldwin & Clark,
2000; Booch et al., 2007; Clune et al., 2013), and also serves as an attractive way to organize
our understanding of neural networks. Just as modularity in computer programming can
allow us to understand each part in a program in isolation, helping us to understand the whole,
modularity in neural networks could offer the same benefits. Modularity has two components:
structural separation and functional specialization. Structural separation is required for there
to be any ‘modules’ to speak of, and in order for it to be possible to understand the network
by understanding the modules, each module must somehow meaningfully specialize in some
sort of functionality. One simple way to define structural separation would be to use the
language of graph clustering (Schaeffer, 2007): set in the context of weighted graphs, clusters
are groups of vertices where the total weight of edges within the group is large in comparison
to the weight of edges from a vertex in the group to a vertex outside the group. This can be
applied to neural networks by treating neurons as vertices and taking the absolute value of
the network weights to be the weights of edges between neurons in adjacent layers.

In this dissertation, we find evidence of cluster structure in the weights of image processing
neural networks and show that these clusters have a kind of functional relevance that random
groups of neurons do not. Dropping them out damages accuracy more than dropping out
random groups of neurons, and they are easier to jointly activate than random groups of
neurons, but they do not seem to specialize in inputs with specific labels. We also conduct a
case study of networks used for modelling the reward functions of image-based environments.
Consonant with the above results, we fail to find natural high-level features being faithfully
represented by the networks in any layer, and exhibit classes of inputs where these networks
reliably mispredict the reward, demonstrating that they cannot be representing and properly
processing these high-level features, and motivating concerns about goal misgeneralization.
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1.1 Overview
In Chapter 2, we review related work that forms a useful background to this paper. Topics
we touch on include mechanistic interpretability, structure in neural networks, adversarial
examples, other frames on neural network interpretability, and goal misgeneralization.

In Chapter 3, we study the graph clusterability structure of neural networks trained on
standard image classification tasks. We show that such neural networks are often “clusterable”
in the sense that the spectral clustering algorithm finds partitions of the neurons that score
lower on the normalized cut metric (Shi & Malik, 2000) than the partitions found by spectral
clustering on random neural networks. We investigate training conditions that promote this
clusterability: weight pruning, dropout, and in some cases L1 and L2 regularization. We also
develop and test novel regularization methods to promote clusterability, and show that they
have some success on multi-layer perceptrons. We show that clusterability is associated with
reducing training set error. Finally, we do some exploratory analysis of which datasets induce
clusterability, finding ambiguous results that are not predicted by any simple theory.

In Chapter 4, we study the functional relevance of clusters of neurons by testing for
“local specialization”: the network’s use of certain clusters to do specific computations.
To operationalize local specialization, we break it down into properties of clusters called
“importance” and “coherence”. By “importance”, we roughly mean whether the cluster
contributes to network accuracy (compared to if it were dropped out), and by “coherence”,
we roughly mean whether the neurons consistently fire on inputs with similar features.
We develop automated metrics for measuring importance and coherence, show that graph
clustering algorithms find important and coherent clusters, and identify the ways in which the
clusters are coherent: specifically, that it is easier to jointly induce high activations in clusters
than in other groups of neurons, but that clusters do not seem to ‘specialize’ in helping with
some classes but not others. Overall, this shows that networks do locally specialize their
computation, and that this local specialization matches the cluster structure of the network
weights.

In Chapter 5, we provide a case study of some neural networks trained on a reward
function. Related to our failure to find cluster specialization with respect to class label, we
see if we can probe these networks for natural high-level features relevant to classification.
The reward function we use is that of the Procgen game ‘CoinRun’ (Cobbe et al., 2020). In
this game, the player controls an agent sprite that has to reach a coin. Reward is zero until
distance to the coin is below a (low) threshold, at which point reward reaches 10 and the
game ends. We show that the networks cannot be linearly probed for the distance to the
coin to a high degree of accuracy, and that the networks can be ‘fooled’ by frames where
the agent sprite jumps up rather than down to the coin—falsifying the proposition that the
network represents distance to the coin and uses it appropriately. This represents a novel
example of goal misgeneralization, one of the concerns motivating this dissertation.

Finally, Chapter 6 summarizes the dissertation and describes future work to better
understand and manipulate the cluster structure of neural networks.
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Chapter 2

Related work

This chapter presents an overview of research that provides a useful background to the rest
of this dissertation.

This research aligns with the sub-field of artificial intelligence known as neural network
interpretability, focussed on the general question of understanding how neural networks work.
Surveys by Samek et al. (2021) and Räuker et al. (2023) provide useful overviews of the
literature on this topic.

The dissertation is more closely related to the sub-sub-field of mechanistic interpretability.
The literature in this area has blossomed since Cammarata et al. (2020) showed that neural
networks used in image classification contain ‘circuits’: sub-networks that perform compre-
hensible computation on comprehensible features, such as a car detector filter that linearly
combines a window detector, a car body detector, and a wheels detector. Most relevant to this
dissertation is mechanistic interpretability research that focusses on formalizing the notion of
structures inside neural networks and how to detect them, rather than manually finding such
structures. For example, Elhage et al. (2021) provide a convenient formalism for describing
computation in transformers, which was used in the discovery of induction heads: portions
of a network that find previous occurrences of an input token and predict what followed
those tokens (Olsson et al., 2022). Elhage et al. (2023) later describe why a certain basis of
the residual stream of transformers is privileged over other bases under Adam optimization
(Kingma & Ba, 2014), and how that impacts that formalism. Chan et al. (2022) provide a
definition of the degree to which a neural network structure contributes to performance on a
certain task and an ablation-based algorithm to measure this degree. Conmy et al. (2023)
outline a method to automatically find circuits in neural networks responsible for certain
tasks. Most recently, Bricken et al. (2023) use dictionary learning to find an overcomplete
basis of the activation space of transformers that is ‘monosemantic’: that is, that each basis
vector corresponds to a single human-comprehensible concept.

There has also been work outside the mechanistic interpretability literature that focusses
on finding structure in neural networks. Examples include work by Frankle and Carbin (2019),
who discover that trained neural networks contain efficiently-trainable sub-networks, inspiring
multiple follow-up papers (Frankle et al., 2020; H. Zhou et al., 2019), and You et al. (2020),
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who form a ‘relational graph’ from a neural network, and study how network performance
relates to properties of the relational graph. There is also a literature on modularity in neural
networks, which is covered in Section 3.6.

One challenge to the view of neural networks as representing natural features is the
literature on adversarial examples. This literature was first developed by Szegedy et al. (2014)
and Nguyen et al. (2015), who discovered that image classification networks had certain
flaws: imperceptible perturbations could be applied to images to prevent them from being
classified correctly, and unrecognizable images could be created that were classified with
high confidence. Given the mismatch with human vision, these examples indicate that image
classification networks cannot be representing the same sorts of features as humans do and
also using those features in the same way that humans do. To this day, adversarial robustness
remains an unsolved problem (Croce et al., 2024; Croce et al., 2020). Furthermore, at least
some adversarial examples are not just accidents of training, but result from features that
are highly predictive on the training dataset (Engstrom et al., 2019; Ilyas et al., 2019).

Beyond the frames for thinking about neural network computation quoted earlier, some
others exist. One prominent frame is that of the neural tangent kernel (Jacot et al., 2018).
This refers to the result that at infinite width, when using standard weight initialization
distributions, neural networks are equivalent to a kernel method using a specific kernel known
as the neural tangent kernel, and the process of gradient descent on neural networks is
equivalent to kernel gradient descent using the neural tangent kernel. This would suggest
focussing on the eigenfunctions of the neural tangent kernel as a key to understanding
network behaviour (Bordelon et al., 2020; Simon et al., 2022). That said, flaws with the
neural tangent kernel have motivated discussions of extensions of the research: firstly, into a
different initialization method where, unlike the neural tangent kernel, feature learning takes
place at infinite width, and characterizing this infinite-width behaviour (Yang & Hu, 2021);
and secondly, looking at effects that are first-order in inverse width that characterize the
difference between large-but-finite width and infinite width neural networks (Roberts et al.,
2022). It remains to be seen what interpretability methods these extensions will inspire.

Another framework for thinking about neural network learning is singular learning theory
(S. Watanabe, 2009, 2018). To somewhat simplify, singular learning theory studies Bayesian
learning in the setting where whole algebraic varieties inside a parameterized model class
induce the same distribution over evidence—for example, where for some data, the set of
minimal-loss parameters is a circle or a figure 8. Neural networks are such a model class,
in part due to continuous symmetries of networks that use the ReLU activation function
(Petzka et al., 2020), but also because a network of a given width can simulate a network
of a smaller width by setting the vector of input weights to multiple different neurons to
be proportional, and one can continuously interpolate between various ways of doing this
(Nagayasu & Watanabe, 2023; Şimşek et al., 2021). The stylized result of singular learning
theory is that in cases where the set of minimal-loss parameters is something like a circle or
a figure 8 rather than a set of isolated points, the posterior will converge on this set more
quickly than classical statistical learning theory would predict. Specifically, if the set of
optimal parameters has points in them that prevent them from being a manifold (like the
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point in a figure 8 where two lines cross), the posterior will converge to those points, known
as ‘singularities’. Furthermore, the more ‘complex’ the singularity is (roughly, the more lines
that cross at the singularity), the sooner the posterior accumulates at it. Singular learning
theory also features the phenomenon of phase transitions, where posterior mass suddenly
switches from complex singularities that model the data well to simpler singularities that
model the data better.

In recent years, singular learning theory has gained some steam as a way of thinking about
neural networks (Lau et al., 2023; Wei et al., 2022), in part because it offers an explanation
of why overparameterized networks can learn to generalize on natural distributions while
still being able to memorize random noise (since memorization that critically relies on all
parameters is a less complex singularity than simulating a neural network of fewer parameters),
and in part because it is able to retrodict phase transitions seen in toy deep learning problems
(Chen et al., 2023; Elhage et al., 2022). It is also conceptually related to the mode connectivity
line of research, which studies cases where two neural network parameterizations that induce
zero loss can be continuously interpolated between while maintaining near-zero loss along
the path (Draxler et al., 2018; Freeman & Bruna, 2017; Garipov et al., 2018). This way of
thinking motivates understanding neural networks via the phase transitions that they went
through during training (Hoogland et al., 2023), as well as understanding the set of zero- or
low-loss parameters connected to the final network (Juneja et al., 2022; Lubana et al., 2023).

Finally, the motivation of this dissertation is concern about goal misgeneralization, where
an AI system behaves as desired during training, but at some point during deployment
competently pursues a goal other than the desired one, perhaps catastrophically. This
concern was expressed in academic literature by Bostrom (2014, Chapter 8) under the
term “treacherous turn”. Hubinger et al. (2019) then fleshed it out under the terms “mesa-
optimization” and “inner (mis)alignment”. Further attempts at formalization and examples are
given by Di Langosco et al. (2022), who provide a definition and examples in the reinforcement
learning (RL) setting, and Shah et al. (2022), who provide a broader definition for learning
systems in general and examples both within and outside the context of RL. The issue is
discussed by Ngo et al. (2022), who also identify interpretability research as a countermeasure,
and by Carlsmith (2023) at great depth and less technically. The problem can be cast as a
specific instance of distributional shift, identified as an issue for AI safety by Amodei et al.
(2016), and about which there is a wealth of literature which is beyond the scope of this
review.
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Chapter 3

Clusterability in Neural Networks

3.1 Introduction
As mentioned in the introduction of this dissertation, for the purposes of understanding
neural networks, it would be convenient if they were modular. Consider the view described
by Goodfellow et al. (2016), quoted in Chapter 2: “Another perspective on deep learning
is that depth enables the computer to learn a multistep computer program. Each layer of
the representation can be thought of as the state of the computer’s memory after executing
another set of instructions in parallel.” Just as modularity in computer programming can
allow us to understand each part in a program in isolation, helping us to understand the
whole, modularity in neural networks could offer the same benefits. This can be especially
attractive when contrasted with an alternative of understanding each neuron individually,
given the large number of neurons in modern networks, and given that in non-modular
systems, each component can only be understood in light of a large fraction of the other
components of the system.

In this chapter, we study a graph-theoretic analog to modularity: the extent to which a
network can be partitioned into sets of neurons where each set is strongly internally connected,
but only weakly connected to other sets. This definition refers only to the learned weights of
the network, not to the data distribution, nor to the distributions of outputs or activations of
the model. More specifically, we use a spectral clustering algorithm (Shi & Malik, 2000) to
decompose trained networks into clusters, and measure the goodness of this decomposition.
Since any degree of non-uniformity of weights can induce clusterability, we also measure the
relative clusterability of a network compared to networks with the same set of weights in
each layer but shuffled randomly, in order to determine whether any clusterability is simply
due to each layer’s distribution of weights.

We conduct an empirical investigation into the clusterability of multi-layer perceptrons
(MLPs) and convolutional neural networks (CNNs) trained on MNIST, Fashion-MNIST, and
CIFAR-10 (Krizhevsky, 2009; LeCun et al., 1998; Xiao et al., 2017), using weight pruning
and other regularization methods. We also test if clusterability can be induced by training
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Figure 3.1: A pruned neural network, split into clusters.

on datasets that benefit from some degree of parallelism to classify. In addition, we test
the clusterability of neural networks trained by other researchers in the VGG, ResNet, and
Inception families (He et al., 2016a; Simonyan & Zisserman, 2015; Szegedy et al., 2016) for
ImageNet classification (Deng et al., 2009). Finally, we investigate two ways of training neural
networks specifically to promote clusterability: regularizing for clusterability and clusterable
initialization.

Our main contributions are:

• Presenting a definition of absolute and relative clusterability of a neural network
(section 3.2).

• Showing that trained neural networks are often more absolutely clusterable than
randomly initialized networks (sections 3.3 and 3.4).

• Showing that neural networks trained with dropout and/or weight pruning are typically
relatively clusterable, and often more clusterable than all 50 shuffled networks to which
we compare them (sections 3.3 and 3.4).

• Showing that large neural networks trained for state-of-the-art ImageNet classification
are reliably more clusterable than 99 out of 100 shuffled networks, and that a mid-sized
VGG trained with dropout and weight pruning on CIFAR-10 classification reliably
produces networks more clusterable than all 50 of their shuffles (section 3.4).

• Demonstrating novel methods of promoting clusterability in MLPs in a way that is
compatible with standard neural network architectures and training procedures, with
little loss in accuracy (section 3.5).

Code is available at https://github.com/dfilan/clusterability_in_neural_networks.

https://github.com/dfilan/clusterability_in_neural_networks
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3.2 Clustering neural networks

3.2.1 Definitions

We represent a neural network as a weighted, undirected graph G. To do this for an MLP,
we identify each neuron with any incoming or outgoing non-zero weights1, including the pixel
inputs and logit outputs, with an integer between 1 and N , where N is the total number of
neurons, and take the set of neurons to be the set V of vertices in G. Two neurons have an
undirected edge between them if they are in adjacent layers, and the weight of the edge is
equal to the absolute value of the weight of the connection between the two neurons. We
represent the set of weights by the adjacency matrix A defined by Aij = Aji := the edge
weight between neurons i and j. If there is no edge between i and j, then Aij = Aji := 0. As
such, A encodes all the weight matrices of the neural network, but not the biases.

For a CNN, the ‘neurons’ we use are channels of the hidden layers—we omit the input
layer and fully-connected layers at the end of the network. In this case, the weight of the
edge between two channels is the L1 norm of the two-dimensional slice of the convolutional
filter by which the input channel maps to the output channel.2 When batch normalization is
used between two convolutional layers, we divide weights by the moving standard deviation
and multiply them by the scaling factor γ.

The degree of a neuron i is defined by di :=
∑

j Aij. The degree matrix D is a diagonal
matrix where the diagonal elements are the degrees: Dii := di. We define the volume of a set
of neurons X ⊆ V as vol(X) :=

∑
i∈X di, and the weight between two disjoint sets of neurons

X, Y ⊆ V as W (X, Y ) :=
∑

i∈X,j∈Y Aij. If X ⊆ V is a set of neurons, then we denote its
complement as X̄ := V \X.

A partition of the network is a collection of disjoint subsets X1, . . . , Xk ⊆ V whose union
forms the whole vertex set. Our ‘goodness measure’ of a partition is the normalized cut
metric (Shi & Malik, 2000) defined as n-cut(X1, . . . , Xk) :=

∑k
i=1W (Xi, X̄i)/vol(Xi), which

we call ‘n-cut’ in text. The n-cut will be low if neurons in the same partition element tend to
share high-weight edges and those in different partition elements share low-weight edges or no
edges at all, as long as the sums of degrees of neurons in each partition element are roughly
balanced. For a probabilistic interpretation of n-cut that gives more intuitive meaning to the
quantity, see subsection 3.2.2.

Finally, the graph Laplacian is defined as L := D − A,3 and the normalized Laplacian
as Lnorm := D−1L. Lnorm is a positive semi-definite matrix with N real-valued non-negative
eigenvalues (von Luxburg, 2007). The eigenvectors and eigenvalues of Lnorm are the generalized
eigenvectors and eigenvalues of the generalized eigenvalue problem Lu = λDu.

1When networks are pruned, often some neurons have all incident weights pruned away, leaving them
with no functional role in the network. We ignore these neurons in order to run spectral clustering.

2We also tried constructing the graph with the L2 norm, and found essentially similar results.
3For the connection to the second derivative operator on Rn, see Filan (2022) and von Luxburg (2007).
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Algorithm 1 Normalized Spectral Clustering
Input: Adjacency matrix A, number k of clusters
Compute the normalized Laplacian Lnorm

Compute the first k eigenvectors u1, . . . , uk ∈ RN of Lnorm

Form the matrix U ∈ Rk×N whose jth row is u⊤
j

For n ∈ {1, . . . , N}, let yn ∈ Rk be the nth column of U
Cluster the points (yn)

N
n=1 with the k-means algorithm into clusters C1, . . . , Ck

Return: Clusters X1, . . . , Xk with Xi = {n ∈ {1, . . . , N} | yn ∈ Ci}

3.2.2 Probabilistic interpretation of n-cut

As well as the formal definition given in Subsection 3.2.1, n-cut has a more intuitive interpre-
tation. Note that a similar argument appears in Meilă and Shi (2001).

Divide each edge between vertices i and j into two ‘stubs’, one attached to i and the other
attached to j, and associate with each stub the weight of the whole edge. Now: suppose
(X1, . . . , Xk) is a partition of the graph. First, pick an integer l between 1 and k uniformly at
random. Secondly, out of all of the stubs attached to vertices in Xl, pick one with probability
proportional to its weight. Say that this procedure ‘succeeds’ if the edge associated with that
stub connects two vertices inside Xl, and ‘fails’ if the edge connects a vertex inside Xl with a
vertex outside Xl. The probability that the procedure fails is n-cut(X1, . . . , Xk)/k.

Therefore, the n-cut divided by k is roughly a measure of what proportion of edge weight
coming from vertices inside a partition element crosses the partition boundary.

3.2.3 Spectral clustering

To measure the clusterability of a graph, we use a spectral clustering algorithm to compute
a partition, which we call a clustering, and evaluate the n-cut. The algorithm we use (Shi
& Malik, 2000) solves a relaxation of the NP-hard problem of finding a clustering that
minimizes the n-cut (von Luxburg, 2007). It is detailed in algorithm 1, which is adapted
from von Luxburg (2007). We use the scikit-learn implementation (Pedregosa et al., 2011)
using the ARPACK eigenvalue solver (Lehoucq et al., 1998).

We define the n-cut of a network as the n-cut of the clustering this Algorithm 1 returns,
run with k = 12.4 Since the n-cut is low when the network is clusterable, we will describe a
decrease in n-cut as an increase in absolute clusterability and vice versa.

To measure the relative clusterability of an MLP, we sample 50 random networks by
randomly shuffling the weight matrix of each layer of the trained network. We convert these
networks to graphs, cluster them, and find their n-cuts. For CNNs, we shuffle the edge
weights between channels once the network has been turned into a graph, which is equivalent
to shuffling which two channels are connected by each spatial kernel slice. We then compare

4Subsection 3.3.6 shows results of some clusterability experiments for k ∈ {2, 4, 7, 10}. Results are similar
for all values except k = 2.
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the n-cut of the trained network to the sampled n-cuts, estimating the left one-sided p-value
(North et al., 2002) and the Z-score: the number of standard deviations the network’s n-cut
lies below or above the mean of the shuffle distribution. This determines whether the trained
network is more clusterable than one would predict based only on its sparsity and weight
distribution.

3.3 Clusterability in MLPs
In this section, we report the results of experiments designed to determine the degree of
clusterability of MLPs. For each experiment we train an MLP with 4 hidden layers, each of
width 256, using Adam (Kingma & Ba, 2014). After the network has neared convergence,
we train for additional epochs with weight pruning on a polynomial decay schedule (Zhu &
Gupta, 2017) up to 90% sparsity. Pruning is used since the pressure to minimize connections
plausibly causes modularity in biological systems (Clune et al., 2013).

During training, we use the Adam algorithm (Kingma & Ba, 2014) with the standard
Keras hyperparameters: learning rate 0.001, β1 = 0.9, β2 = 0.999, no amsgrad. The loss
function was categorical cross-entropy. For pruning, our initial sparsity is 0.5, our final
sparsity is 0.9, the pruning frequency is 10 steps, and we use a cubic pruning schedule (see
Zhu and Gupta (2017)). Initial and final sparsities were chosen due to their use in the
TensorFlow Model Optimization Tutorial.5 A batch size of 128 was used. Training went for 20
epochs before pruning, followed by 20 epochs of training with pruning. We use Tensorflow’s
implementation of the Keras API (Chollet et al., 2015; Martín Abadi et al., 2015).

First, we show results for MLPs trained on the MNIST and Fashion-MNIST datasets.
We investigate networks trained with either no regularization, dropout with p = 0.5, L1

regularization with weight 5 × 10−5, or L2 regularization with weight 5 × 10−5. For each
condition, we train for 5 runs, and check clusterability both right before pruning as well as at
the end of training. In all conditions, networks train to ∼98% test accuracy on MNIST, and
87-89% test accuracy on Fashion-MNIST. At initialization, these networks have n-cuts of
between 10.2 and 10.4, as plotted in Figure A.1.

When training with L2 regularization, we occasionally found that networks had near-zero
n-cut. This seemed to be due to extremely unbalanced clusterings where small groups of
neurons were effectively disconnected from the rest of the network. When this happened, we
retrained until the n-cut was significantly above zero, since we felt that the near-zero n-cuts
did not reflect the true clusterability of the bulk of the network.

Results are shown in Figures 3.2 and 3.3, and Tables A.1 and A.2. We see that pruning
promotes absolute clusterability, and dropout promotes absolute and relative clusterability.
L1 and L2 regularization promote absolute clusterability pre-pruning, but not after pruning,
at the expense of relative clusterability. All networks appear to be more clusterable than at
initialization, except those trained with L1 regularization and pruning.

5URL: https://web.archive.org/web/20190817115045/https://www.tensorflow.org/model_optimization/
guide/pruning/pruning_with_keras

https://web.archive.org/web/20190817115045/https://www.tensorflow.org/model_optimization/guide/pruning/pruning_with_keras
https://web.archive.org/web/20190817115045/https://www.tensorflow.org/model_optimization/guide/pruning/pruning_with_keras
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Figure 3.2: Clusterability of MLPs trained without pruning. Points are labeled with their
one-sided p-value.

Figure 3.3: Clusterability of MLPs trained with pruning. Points are labeled with their
one-sided p-value.
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3.3.1 ‘Halves’ datasets

We hypothesized that clusterability comes from different parts of the network independently
computing different things. To test this, we trained on datasets that we hypothesized would
lend themselves to parallel processing.

The first type of dataset, called ‘MNIST-halves’, features two MNIST images side-by-side,
each shrunk in width so that the combined image is still 28× 28 pixels. In ‘MNIST-halves-
same’, both images are elements of the same class, and the class of the composite image
is the class that the halves have. By contrast, in ‘MNIST-halves-diff’, the images come
from random classes, and the class of the composite image is the sum of the classes of each
half, modulo 10. For this task, it would be advantageous if the network could devote some
neurons to processing one half, some to processing the other, and then combine the results.
Since the neurons processing one half would not need information from those processing
the other, we speculate that networks trained on ‘halves-diff’ will be more clusterable than
those trained on those trained on ‘halves-same’. We also make the same construction out
of the Fashion-MNIST dataset, using the numerical class labels associated with the dataset.
Samples from these datasets are shown in Figure 3.4. Networks train to around 99% accuracy
on MNIST-halves-same, 92% on MNIST-halves-diff, 93-94% on Fashion-halves-same, and
71-72% on Fashion-halves-diff.

Figure 3.4: Samples from ‘halves’ datasets, all of class 3. Each row has 10 images from the
respective dataset. First row is MNIST-halves-same, second is MNIST-halves-diff, third is
Fashion-halves-same, fourth is Fashion-halves-diff.

Results are shown in Figure 3.5 and Table A.3. Networks trained on halves-diff datasets
are more relatively clusterable than those trained on halves-same datasets, but not more
absolutely clusterable. All networks are more clusterable than at initialization.
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Figure 3.5: Clusterability of MLPs trained on ‘halves’ datasets. Points are labeled with their
one-sided p-value.

3.3.2 Polynomial regression

We also train an MLP on a type of polynomial regression task, to see if this induces
clusterability. The inputs to the network are two numbers, x and y, each independently
normally distributed with mean 0 and variance 1. Each input is associated with a 512-
dimensional label. Each label dimension is associated with one of the 512 polynomials in x
and y with coefficients in {0, 1} and exponents in {0, 1, 2}. For a given input, each dimension
of the label has the value of the corresponding polynomial evaluated at that input. The
network, with 4 hidden layers of 256 neurons each and 512 outputs, is trained to minimize
mean square error between its outputs and the label. Test losses range from 0.005 to 0.16
without regularization (with most losses being approximately 0.01), 0.3 when L1 regularization
is used, and between 0.07 and 0.3 when L2 regularization is used. Dropout seemed to harm
performance and was therefore not used.

Since monomials like x2y2 can be computed based on monomials x2 and y2, and since
each of the 8 valid non-constant monomials appears in 256 of the polynomials, one might
expect that the network would adopt a clusterable structure, computing different monomials
somewhat independently and combining their results in the output.

Results are shown in Figure 3.6 and Table 3.1. We see that networks trained on this task
are consistently relatively clusterable, and that pruning enhances clusterability as usual.
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Figure 3.6: Clusterability of MLPs trained on polynomial regression. Points are labeled with
their one-sided p-value.

Reg. method Pruning? N-cut Dist. n-cuts Prop. p < 0.02 Train loss Test loss

None × 9.808 10.187± 0.013 5/5 0.078 0.046
None

√
8.009 9.301± 0.032 5/5 0.025 0.024

L1 × 9.210 9.278± 0.031 3/5 0.350 0.319
L1

√
6.665 8.468± 0.059 5/5 0.211 0.192

L2 × 8.115 9.867± 0.012 5/5 0.175 0.140
L2

√
8.438 9.800± 0.067 5/5 0.101 0.078

Table 3.1: Clusterability of MLPs trained on polynomial regression. See start of Appendix A
for details. Losses averaged over 5 runs.
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Dataset N-cuts Mean train acc. Mean test acc.

MNIST 8.880± 0.049 1.000 0.984
LINES 7.361± 0.096 1.000 1.000
LINES-MNIST 7.955± 0.096 1.000 0.991
LINES-MNIST-SEP 8.26± 0.19 1.000 0.994

Table 3.2: N-cuts and accuracies for networks trained on mixture datasets without dropout.
LINES-MNIST refers to the dataset where each class has data from both LINES and MNIST,
while LINES-MNIST-SEP refers to the dataset where classes 0-4 have examples from LINES
and classes 5-9 have examples from MNIST. Each row presents statistics for 5 networks. The
“N-cuts” column shows the mean and standard deviation over 5 networks.

3.3.3 Mixture dataset experiments

We initially hypothesized that modularity is a result of different regions of the network
processing different types of input. To test this, we developed mixture datasets composed of
two original datasets. These datasets are either of the ‘separate’ type, where one original
dataset has only classes 0 through 4 included and the other has classes 5 through 9 included;
or the ‘overlapping’ type, where both original datasets contribute examples of all classes.
The datasets that we mix are MNIST and LINES, which consists of 28×28 images of white
vertical lines on a black background, labeled with the number of vertical lines.

If modularity were a result of different regions of the network specializing in processing
different types of information, we would expect that networks trained on mixture datasets
would have n-cuts lower than those trained on either constituent dataset. This is not what
we observe.

Table 3.2 shows n-cuts and accuracies for networks trained with pruning but without
dropout, while Table 3.3 shows the same for networks trained with pruning and dropout.
Networks trained on mixtures between LINES and MNIST have n-cuts intermediate between
those trained on LINES and those trained on MNIST. That being said, the artificial nature
of the LINES dataset, as well as the low test accuracy of networks trained with dropout on
LINES (seemingly implying that dropout in this case increased the degree of overfitting), put
the generalizability of these results into question.

3.3.4 Random dataset experiments

There are two potential dataset-agnostic explanations for why clusterability would increase
during training. The first is that it increases naturally as a byproduct of applying gradient
updates. The second is that in order to accurately classify inputs, networks adopt relatively
clusterable structure. To distinguish between these two explanations, we run three experiments
on a dataset of 28×28 images with i.i.d. uniformly random pixel values, associated with



CHAPTER 3. CLUSTERABILITY IN NEURAL NETWORKS 18

Dataset N-cuts Mean train acc. Mean test acc.

MNIST 8.350± 0.046 0.967 0.979
LINES 6.85± 0.16 0.912 0.296
LINES-MNIST 6.933± 0.094 0.873 0.637
LINES-MNIST-SEP 7.779± 0.072 0.984 0.894

Table 3.3: N-cuts and accuracies for networks trained on mixture datasets with dropout.
Notation as in Table 3.2.

random labels between 0 and 9.
In the unlearnable random dataset experiment, we train an MLP on 60,000 random

images with default hyperparameters, 10 runs with dropout and 10 runs without. Since
the networks are unable to memorize the labels, this tests the effects of SGD controlling
for accuracy. We compare the n-cuts of the unpruned networks against the distribution of
randomly initialized networks to check whether SGD without pruning increases clusterability.
We also compare the n-cuts from the pruned networks against the distribution of n-cuts from
shuffles of those networks, to check if SGD increases clusterability in the presence of pruning
more than would be predicted purely based on the increase in sparsity.

In the kilo-epoch random dataset experiment, we modify the unlearnable random
dataset experiment to remove the pruning and train for 1000 epochs instead of 20, to check if
clusterability simply takes longer to emerge from training when the dataset is random. Note
that even in this case, the network is unable to classify the training set better than random.

In the memorization experiment, we modify the random dataset and training method
to be more easily learnable. To do this, we reduce the number of training examples to 3,000,
train without pruning for 100 epochs and then with pruning for 100 more epochs, and refrain
from shuffling the dataset between epochs. As a result, the network is often able to memorize
the dataset, letting us observe whether SGD, pruning, and learning can increase clusterability
on an arbitrary dataset.

As is shown in Table 3.4, the unlearnable random dataset experiment shows no increase in
clusterability before pruning relative to the initial distribution shown in Figure A.1, suggesting
that it is not a result of the optimizer alone. We see an increase in clusterability after pruning,
but no relative clusterability, and absolute clusterability is below that of MLPs trained on
MNIST or Fashion-MNIST with no regularization or with dropout displayed in Figure 3.3.

The results from the kilo-epoch random dataset experiment are shown in Table 3.5. The
means and standard deviations suggest that even a long period of training caused no increase
in clusterability relative to the distribution shown in Figure A.1, while pruned networks were
not relatively clusterable or as clusterable as those trained on MNIST or Fashion-MNIST
plotted in Figure 3.2.

The results of the memorization experiment, shown in Table 3.6, are different for the
networks trained with and without dropout. Some networks trained with dropout memorized
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Dropout Unp. n-cuts N-cuts Dist. n-cuts Prop. p < 0.02 Train acc.

× 10.289± 0.035 9.336± 0.026 9.326± 0.046 0/10 0.101√
10.266± 0.041 9.312± 0.040 9.316± 0.042 0/10 0.102

Table 3.4: Results from the unlearnable random dataset experiment. Reporting as in tables
in appendix A. “Unp” is short for unpruned. Accuracies and n-cut distributions are of pruned
networks.

Dropout Unp. n-cuts N-cuts Dist. n-cuts Prop. p < 0.02 Train acc.

× 10.267± 0.044 9.332± 0.022 9.331± 0.050 0/10 0.101√
10.274± 0.031 9.299± 0.045 9.305± 0.045 0/10 0.101

Table 3.5: Results from the kilo-epoch random dataset experiment. Reporting as in Table 3.4.

Dropout Unp. n-cuts N-cuts Dist. n-cuts Prop. p < 0.02 Train acc.

× 10.093± 0.025 8.746± 0.029 9.154± 0.035 10/10 1.000√
10.221± 0.061 8.82± 0.15 8.984± 0.042 6/10 0.213

Table 3.6: Results from the memorization experiment. Reporting as in Table 3.4.

the dataset, and they appear to be relatively clusterable Those trained without dropout all
memorized the dataset and were all relatively clusterable. In fact, their degree of clusterability
is similar to that of those trained on Fashion-MNIST or MNIST without dropout. Before the
onset of pruning, the n-cuts of the networks trained without dropout were consistently lower
than those of randomly initialized networks, as shown in Figure A.1, and the n-cuts of those
trained with dropout were at the lower end of the randomly initialized distribution.

Overall, these results suggest that the training process promotes modularity as a by-
product of learning or memorization, and not automatically. Furthermore, we see that
dropout fails to promote clusterability when it inhibits memorization.

3.3.5 Topology-preserving shuffles

One might suppose that the increase in clusterability relative to random networks is due to
the pruning producing a clusterable topology, and that the values of the non-zero weights are
unimportant. To test this, we compare each trained network to a new distribution: instead of
randomly shuffling all elements of each weight matrix, we only shuffle the non-zero elements,
thereby preserving the network’s topology.
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Figure 3.7: N-cuts of pruned networks trained on MNIST and Fashion-MNIST with and
without dropout, compared to the distribution of n-cuts of networks generated by shuffling
all elements of each weight matrix (shown in blue, labeled ‘layer’), as well as the distribution
of n-cuts of networks generated by shuffling only the non-zero elements of each weight matrix
so as to preserve network topology (shown in orange, labeled ‘layer-nonzero’). Realized
n-cuts are shown as black vertical lines. Produced by the distplot function of seaborn 0.9.0
(Waskom et al., 2018) with default arguments.

Figure 3.7 shows the n-cuts of some representative networks compared to the distribution
of n-cuts of all shuffled networks, and also the distribution of n-cuts of the topology-preserving
shuffles. We see three things: first, that in all cases our networks are more clusterable than
would be expected given their topology; second, that the topology-preserving shuffles are
more clusterable than other shuffles, suggesting that the pruning process is removing the
right weights to promote clusterability; and third, that with dropout, the distribution of
topology-preserving shuffles has much lower n-cuts than the distribution of all shuffles.

3.3.6 Choosing the number of clusters

The number of clusters is a hyperparameter of the spectral clustering algorithm. In most of
this paper, we report the results from using 12 clusters.

To test the robustness of our results to this hyperparameter, we re-ran the MLP cluster-
ability experiments on pruned networks trained with and without dropout, using 2, 4, 7, and
10 clusters. In each condition, we trained 10 networks, compared to a distribution of 320
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shuffles, and counted how many networks were more clusterable than all 320 of the shuffles.
For 4, 7, and 10 clusters, the results align with those reported earlier in this section: networks
are relatively clusterable, and more clusterable (both absolutely and relatively) when trained
with dropout. Results are shown in Tables 3.7, 3.8, and 3.9 respectively.

Dataset Dropout N-cuts Dist. n-cuts p < 1/320 Train acc. Test acc

MNIST × 2.000± 0.035 2.042± 0.017 7/10 1.00 0.984
MNIST

√
1.840± 0.015 2.039± 0.019 10/10 0.967 0.979

Fashion × 1.880± 0.030 1.992± 0.018 10/10 0.983 0.893
Fashion

√
1.726± 0.022 2.013± 0.017 10/10 0.863 0.869

Table 3.7: Clusterability results for pruned MLPs with 4 clusters. N-cuts shows the mean
and standard deviations of the n-cuts of the trained networks. Dist. n-cuts shows the average
mean and standard deviation of the distributions of shuffles, the average being taken over
the 10 trained networks. p < 1/320 shows how many networks were more clusterable than all
320 shuffles. Accuracies are averaged over runs.

When we ran the experiments with 2 clusters, the significance results were very different,
as shown in Table 3.10. No network trained on MNIST or Fashion-MNIST was statistically
significantly clusterable. We therefore conjecture that our results generalize to any number
of clusters that is not too small (or comparable to the number of neurons).

Dataset Dropout N-cuts Dist. n-cuts p < 1/320 Train acc. Test acc.

MNIST × 4.556± 0.052 4.710± 0.026 10/10 1.00 0.984
MNIST

√
4.222± 0.035 4.712± 0.023 10/10 0.967 0.979

Fashion × 4.351± 0.057 4.613± 0.029 10/10 0.983 0.893
Fashion

√
4.079± 0.046 4.663± 0.029 10/10 0.863 0.869

Table 3.8: Clusterability results for pruned MLPs with 7 clusters. Reporting as in Table 3.7.

Dataset Dropout N-cuts Dist. n-cuts p < 1/320 Train acc. Test acc.

MNIST × 7.137± 0.042 7.397± 0.037 10/10 1.00 0.984
MNIST

√
6.688± 0.035 7.421± 0.031 10/10 0.967 0.979

Fashion × 6.975± 0.117 7.257± 0.036 9/10 0.983 0.893
Fashion

√
6.460± 0.041 7.339± 0.034 10/10 0.863 0.869

Table 3.9: Clusterability results for pruned MLPs with 10 clusters. Reporting as in Table 3.7
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Dataset Dropout N-cuts Dist. n-cuts p < 1/320 Train acc. Test acc.

MNIST × 0.333± 0.003 0.330± 0.003 0/10 1.00 0.984
MNIST

√
0.332± 0.002 0.323± 0.003 0/10 0.967 0.979

Fashion × 0.319± 0.003 0.313± 0.003 0/10 0.983 0.893
Fashion

√
0.312± 0.003 0.312± 0.003 0/10 0.863 0.869

Table 3.10: Clusterability results for pruned MLPs with 2 clusters. Reporting as in Table 3.7.

3.4 Clusterability in CNNs
To test if the results found on MNIST and Fashion-MNIST in section 3.3 are specific to the
MLP architecture, we repeat them using a small CNN. Our network has 3 convolutional
hidden layers of 64 channels each, followed by a fully-connected hidden layer with 128 neurons.
All convolutional kernels are 3× 3, with the second and third hidden layers being followed by
max pooling with a 2× 2 window. Batch size was 64, and training proceeded for 10 epochs
before pruning, followed by 10 epochs of training with pruning. L1 and L2 regularization
strength is the same as for MLPs, and dropout rate is 0.25 for convolutional layers and 0.5
for fully-connected layers. In all regularization schemes, networks trained to around 99%
accuracy on MNIST and 90-92% accuracy on Fashion-MNIST. At initialization, their n-cuts
are between 10.90 and 10.95, as shown in Figure A.2.

Results are shown in Figures 3.8, 3.9, and 3.10, and Tables A.4 and A.5. We see that
pruning fails to promote relative clusterability at all, that L1 regularization promotes absolute
but not relative clusterability, and that before pruning, L2 regularization promotes absolute
and relative clusterability. Networks are reliably more clusterable than at initialization,
except those trained with L2 regularization after pruning.

To see if these results generalize to larger networks on more complex datasets, we run the
same experiments using a version of VGG-16 described by S. Liu and Deng (2015) trained
on CIFAR-10. We use a batch size of 128, and train for 200 epochs before 50 epochs of
training with pruning. Data augmentation is used: random rotations between 0 and 15
degrees, random shifts both vertically and horizontally of up to 10% of the side length, and
random horizontal flipping. We use a per-layer dropout rate as specified in S. Liu and Deng
(2015). Without pruning, we achieve 86-90% test accuracy, and with pruning, we achieve
88-91% test accuracy. At initialization, these networks have n-cuts between 8.45 and 8.63, as
plotted in Figure A.3. Results are shown in Figures 3.11 and 3.12, and Table A.6.

We see that these CNNs are typically not relatively clusterable, except when trained with
dropout alone and pruning, or Liu and Deng’s (S. Liu & Deng, 2015) combination of dropout
and L2 regularization as well as pruning. Networks trained without pruning are not more
clusterable than at initialization, but networks trained with pruning are except when only L2

regularization is used.
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Figure 3.8: Clusterability of small CNNs trained without pruning. Points are labeled with
their one-sided p-value. For detail on networks trained with no regularization or dropout, see
Figure 3.9.

3.4.1 Clusterability of ImageNet models

We also explore the clusterability of networks trained on ImageNet (Deng et al., 2009).
Specifically, we looked at VGG-16 and 19 (Simonyan & Zisserman, 2015), ResNet-18, 34,
and 50 (He et al., 2016a), and Inception-V3 (Szegedy et al., 2016). Weights were obtained
from the Python image-classifiers package, version 1.0.0. Clustering was less stable for
these networks, likely because of their large size, so we used 100 random starts for k-means
clustering instead of the default 10, and models were compared to a distribution of 100
shuffles. Results are shown in Figure 3.13 and Table A.7. We observe that all networks are
relatively clusterable.

3.4.2 ‘Stack’ datasets

As in subsection 3.3.1, we explored the effects of datasets we designed to induce modularity.
Instead of the halves datasets, we used ‘stack’ datasets where different images are in different
input channels, rather than shrunk and put next to each other in one channel, because
convolutional layers followed by max-pooling promote spatial location invariance within
channels. The datasets are otherwise the same: in ‘stack-same’, the channels are images of
the same class, while in ‘stack-diff’, the channels are of different classes and the label is the
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Figure 3.9: Clusterability of small CNNs trained without pruning with and without dropout—
a subset of Figure 3.8.

Figure 3.10: Clusterability of small CNNs trained with pruning. Points are labeled with their
one-sided p-value.
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Figure 3.11: Clusterability of VGGs trained without pruning on CIFAR-10. Points are labeled
with their one-sided p-value.

Figure 3.12: Clusterability of VGGs trained with pruning on CIFAR-10. Points are labeled
with their one-sided p-value.
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Figure 3.13: Clusterability of models trained on ImageNet. Points are labeled with their
one-sided p-value.

classes’ sum modulo 10. Images are shown in Figure 3.14. We train the same CNN as was
trained on MNIST and Fashion-MNIST.

Results are shown in Figure 3.15 and Table A.8. We see that pruning promotes absolute
but not relative clusterability, while networks trained on stack-diff datasets are somewhat
more clusterable, both in absolute and relative terms, than those trained on stack-same
datasets. They are always more clusterable than at initialization.

3.5 Promoting clusterability
We explore two methods to promote clusterability while hewing closely to standard training
procedure: regularization and initialization.

3.5.1 Regularization

The most straightforward approach to promote clusterability is regularization. The Cheeger
inequalities (Alon & Milman, 1985; Dodziuk, 1984) give a bound on the Cheeger constant of a
graph (closely related to n-cut for k = 2) in terms of the second eigenvalue of the normalized
Laplacian matrix Lnorm: namely, the lower the eigenvalue, the more easy it is to divide the
network into two. J. R. Lee et al. (2014) have shown that this bound extends to the analog
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Figure 3.14: Samples from ‘stack’ datasets, all of class 3. Each row has 10 images from
the respective dataset. One channel is colored blue, the other is colored green. First row
is MNIST-stack-same, second is MNIST-stack-diff, third is Fashion-stack-same, fourth is
Fashion-stack-diff.

of the Cheeger constant for k > 2. As such, regularizing the kth eigenvalue should produce a
network with a low n-cut value for k clusters.

This is possible because if a symmetric n× n matrix S has distinct eigenvalues λ1, . . . , λn

associated with orthonormal eigenvectors u1, . . . , un, the derivative of λk with respect to S is
uku

⊤
k (Magnus, 1985). Lnorm is not symmetric, but it has the same set of eigenvalues as the

symmetric matrix Lsym := D−1/2LD−1/2. So, we can take the derivative of eigenvalues with
respect to Lsym, which itself is a differentiable function of the network weights, allowing us to
regularize the eigenvalues of Lnorm.

Given the above, we only need compute the gradient of Lsym with respect to each weight
matrix W s. We will then have

∂λk

∂W s
n,m

=
∑
ij

(uk)i(uk)j
∂(Lsym)i,j
∂W s

n,m

.

Since Lsym = I −D−1/2AD−1/2, (Lsym)i,j = δi,j − d
−1/2
i d

−1/2
j Ai,j , where δi,j is the function

that is 1 if i = j and 0 otherwise. Furthermore, for symmetry, we write di = (1/2)(
∑

k Ai,k +
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Figure 3.15: Clusterability of models trained on ‘stack’ datasets. Points are labeled with
their one-sided p-value.

∑
l Al,i). This gives the partial derivatives

∂di
∂Ai,i

= 1

∂di
∂Ai,j

=
1

2

∂di
∂Ak,i

=
1

2
,

where j, k ̸= i.
From here on out, we need not consider derivatives with respect to (Lsym)i,i or Ai,i, since

(Lsym)i,i = Ai,i = 0 always by definition, because nodes don’t have edges to themselves. We
can now compute derivatives of Lsym with respect to A:

∂(Lsym)i,j
∂Ai,j

= −d
−1/2
i d

−1/2
j +

1

4
Ai,j

(
d
−3/2
i d

−1/2
j + d

−1/2
i d

−3/2
j

)
∂(Lsym)i,j

∂Ai,l

=
1

4
Ai,jd

−3/2
i d

−1/2
j
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∂(Lsym)i,j
∂Ak,j

=
1

4
Ai,jd

−1/2
i d

−3/2
j

∂(Lsym)i,j
∂Ak,l

= 0,

where i ̸= k and j ̸= l.
Next, let e(n, s) be the index of neuron n of layer s, and let the weight matrices be W 1

through W S. It’s then the case that

∂Ae(n,s),e(m,s+1)

∂W s
n,m

=
∂Ae(m,s+1),e(n,s)

∂W s
n,m

= sgn(W s
n,m),

and ∂Ai,j/∂W
s
n,m = 0 for all other i and j, by the definition of how A is constructed from

the weight matrices, where sgn(x) is the sign of x: 1 if x > 0, −1 if x < 0, and 0 if x = 0.
Therefore, combining all the equations above, we have:

∂(Lsym)i,j
∂W s

n,m

= sgn(W s
n,m)

(
∂(Lsym)i,j

∂Ae(n,s),e(m,s+1)

+
∂(Lsym)i,j

∂Ae(m,s+1),e(n,s)

)
= sgn(W s

n,m)

(
δi,e(n,s) ×

1

4
Ai,jd

−3/2
i d

−1/2
j + δj,e(m,s+1) ×

1

4
Ai,jd

−1/2
i d

−3/2
j

− δi,e(n,s)δj,e(m,s+1)d
−1/2
i d

−1/2
j + δi,e(m,s+1) ×

1

4
Ai,jd

−3/2
i d

−1/2
j

+ δj,e(n,s) ×
1

4
Ai,jd

−1/2
i d

−3/2
j − δi,e(m,s+1)δj,e(n,s)d

−1/2
i d

−1/2
j

)
.

This concludes our derivation.
To ensure that produced clusterability is meaningful, we must also normalize the weights:

in a network with ReLU activation functions, it is possible to scale the inputs of a hidden
neuron by a positive constant c while scaling the outputs by 1/c without changing the
function the network computes. Since having more weights close to zero makes it easier for
clustering algorithms to cut low-weight edges while preserving high-weight edges, regularizing
for clusterability will induce these transformations. However, they do not make the network
any more modular in any real sense, which is our aim.

Therefore, when applying this regularizer, we manually apply this transformation after
each gradient step to enforce the invariant that the norm of the input weights to each hidden
neuron should be

√
2, chosen to maintain the benefits of He initialization (He et al., 2016b;

Kumar, 2017). This is detailed in algorithm 2.
Due to the expense of eigenvalue computation on large networks, we tested this regularizer

on an MLP with 3 hidden layers of width 64 that was trained on MNIST images downsampled
to 7 × 7 pixels. Training proceeded for 10 epochs followed by 10 epochs of training with
pruning. We trained 10 networks without regularization and 10 with the 2nd, 3rd, and 4th

eigenvalues regularized with weight 0.1. As we see in Table 3.11, little accuracy is lost, and
regularized networks are more clusterable both in absolute and relative terms. Results are
also plotted in Figure 3.16.
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Clust. reg? Pruning? N-cut Dist. n-cuts Prop. p < 0.02 Train acc. Test acc.

× × 10.020 10.035± 0.030 2/10 0.955 0.957
×

√
7.11 7.43± 0.12 4/10 0.930 0.934√

× 8.93 8.14± 0.23 1/10 0.961 0.959√ √
5.51 6.31± 0.20 7/10 0.888 0.896

Table 3.11: Clusterability of networks trained with and without the clusterability regularizer,
with and without pruning. “Dist. n-cuts” contains the mean and standard deviation of the
distribution of n-cuts of shuffled networks. All figures shown are averaged over 10 training
runs, except “Prop. p < 0.02”, which shows how many networks were more clusterable than
all 50 shuffles.

Figure 3.16: Clusterability of small MLPs trained with and without the clusterability
regularizer. Points are labeled with their one-sided p-value.
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Algorithm 2 Normalization for MLP Clusterability Regularization
input: Weight matrices W1, . . . ,Wm, bias vectors b1, . . . , bm
for hidden layers i from 1 to m− 1 do

for all neurons n in the layer do
form v by concatenating the nth column of Wi (that is, the weights that feed into
neuron n) and the nth entry of bi
set x :=

√∑
j v

2
j

if x ̸= 0 then
multiply nth column of Wi by

√
2/x

multiply nth entry of bi by
√
2/x

end if
multiply nth row of Wi+1 by x/

√
2

end for
end for
return: New weight matrices W1, . . . ,Wm and bias vectors b1, . . . , bm

3.5.2 Initialization

Another way to promote clusterability is to initialize weights to be clusterable, and from then
on to train as usual. After standard initialization, we randomly associate each neuron in the
hidden layers with one of c tags. We then weaken the weight of each edge going between
differently-tagged neurons by multiplying it by β ∈ (0, 1), and strengthen each edge going
between neurons with the same tag by a factor of 1+ (1− β)(c− 1). This preserves the mean
absolute value of weights in a layer. This method is computationally cheaper than ongoing
regularization, since it only needs to be done once, and doesn’t require the computation of
eigenvalues.

We trained clusterably initialized MLPs on MNIST and Fashion-MNIST with c = 10
and β = 0.6, chosen to balance performance with final clusterability. We saw no loss in test
accuracy. Results are shown in Figure 3.17 and Table A.9. This initialization method appears
to be effective in promoting relative and absolute clusterability, especially in tandem with
weight pruning. We also trained clusterably initialized CNNs on MNIST and Fashion-MNIST,
and a clusterably initialized VGG on CIFAR-10. For these, we kept c = 10 but instead used
β = 0.8. Again, we saw no loss in test accuracy. Results are shown in Figures 3.18 and 3.19
and Tables A.10 and A.11. By contrast with the MLP results, the initialization seems much
less effective at promoting absolute and relative clusterability.

3.6 Related work
This work adds to a body of research focused on modularity and compositionality in neural
systems either at the neuron level (Mu & Andreas, 2020; Voss et al., 2021; You et al.,
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Figure 3.17: Clusterability of MLPs trained with and without clusterable initialization. Points
are labeled with their one-sided p-value.

Figure 3.18: Clusterability of small CNNs trained with and without clusterable initialization.
Points are labeled with their one-sided p-value.
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Figure 3.19: Clusterability of VGGs trained with and without clusterable initialization. Points
are labeled with their one-sided p-value.

2020) or at the sub-network level (Csordás et al., 2021; Lake et al., 2015; Lake et al., 2017;
Udrescu et al., 2020). Watanabe et al. (C. Watanabe, 2019; C. Watanabe et al., 2018,
2019) demonstrate a different way of grouping neurons into modules, investigate properties
of the modules, and link their notion of modularity to generalization error. Davis et al.
(2020) use a clustering method based on statistical properties (rather than the weights of
the network directly) to visualize networks, prune them, and do feature attribution. Lu
and Ester (2019) bi-cluster neurons in a hidden layer and show that this divides neurons
into functionally-related groups that are important for classification. None of these papers
compare the modularity of networks trained in different ways, nor do they show that networks
are more modular than initialized networks or networks with the same per-layer distribution
of weights.

There is also existing literature on imposing modular structure on neural networks, either
by some kind of dynamic routing (Alet et al., 2018; Andreas et al., 2016; Chang et al., 2018;
De Lange et al., 2021; Goyal et al., 2019; Kirsch et al., 2018; Parascandolo et al., 2018) or by
explicitly enforcing the desired modularity structure (D. Lee et al., 2018; Oyama et al., 2001).
These typically involve training with a non-standard architecture, limiting their broader
applicability. Amer and Maul (2019) offer a review of modularization techniques.



CHAPTER 3. CLUSTERABILITY IN NEURAL NETWORKS 34

3.7 Conclusion
We see that many neural networks are clusterable to a degree that would not be expected
merely from their initialization, or from their distributions of weights. MLPs trained on
image classification are reliably more clusterable than 98% of their shuffles when L1 or L2

regularization is not used, as are networks trained on ImageNet classification. So are VGGs
trained on CIFAR-10, as long as they are trained with dropout (which is standard practice)
and are pruned (which is not). L1 and L2 regularization appear to have irregular effects on
clusterability, sometimes producing spuriously clusterable networks, and sometimes producing
remarkably unclusterable networks. We also demonstrate that clusterability can be induced
in MLPs either by initializing weights differently or by regularization, with little cost to
performance and without hand-coding a non-standard architecture or significantly modifying
the training procedure.

Overall, we find that clusterability is a common phenomenon, giving hope that networks
are also in some sense modular. That being said, our work limits itself to image classification
networks, leaving open the question of clusterability in other domains. We also fail to induce
clusterability in CNNs by initialization or regularization, which suggests a direction for future
work. Finally, although we have investigated a graphical notion of clusterability, we have yet
to demonstrate any functional relevance of this graphical notion. For that, we must proceed
to Chapter 4.
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Chapter 4

Importance and Coherence

4.1 Introduction
In Chapter 3, we applied a graph-theoretic analogue of modularity—that is, clusterability—to
neural networks, investigating how clusterable they are and how they can be made more so.
This was motivated by the potential benefits of modularity for interpretability. However, for
the purposes of interpretability the relevant notion of modularity is functional. If distinct
clusters of neurons perform different sub-tasks then identifying cluster structure aids our
understanding of the network, but if they do not its relevance is unclear. Therefore, it
would be valuable to determine the extent to which neural networks are locally specialized :
that is, how much their functionality can be abstracted into comprehensible sub-tasks, each
localized to different groups of neurons. It is also valuable to know whether the localization
of functionality aligns with the cluster structure investigated in Chapter 3. In this chapter,
we focus on developing quantifiable proxies for local specialization. We then apply them,
together with variants of the partitioning methods used in Chapter 3, to a variety of image
classification networks.

There exists a body of research for developing networks which either have distinct
architectural building blocks (Alet et al., 2018; Goyal et al., 2019; Parascandolo et al.,
2018) or are trained in a way that promotes modularity via regularization or parameter
isolation (De Lange et al., 2021; Kirsch et al., 2018). Yet in machine learning, it is more
common to encounter networks whose architecture and training are not designed to separate
the computation of sub-tasks. For example, in computer vision, networks are generally
trained end-to-end with all of the filters in one layer connected to all filters in the next.
Do such networks nonetheless exhibit local specialization? There is some evidence for this.
For example, by methodical manual investigation, Cammarata et al. (2020) discovered sub-
networks which perform human-explainable sub-tasks such as car detection using neurons
which detect different car parts. More scalably detecting local specialization in networks
would help us to extend our understanding of their learning dynamics and to expand our
interpretability toolbox by suggesting an additional level of abstraction beyond single-neuron
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methods.
In this chapter, we systematically analyze the extent to which networks which are not

explicitly trained to be modular nonetheless exhibit local specialization. First, this requires a
method for breaking down a network’s computational graph into groups of neurons. For this,
we use spectral clustering on a graph representation of the network, using an extension of the
methods of Chapter 3. Second, this requires a scalable method for approximating the degree
to which a partitioning shows local specialization. We do this by applying interpretability
tools to clusters of neurons as a way of quantifying proxies for local specialization.

Proxies for local specialization: Our definition of local specialization requires human-
comprehensible sub-tasks relevant to the overall task to be localized in particular subsets of
neurons. However, directly determining this would require a human in the loop, making it
difficult to scale such a method. How could measuring local specialization be automated?
Consider an idealized prototype of a highly modular network that has subsets of neurons
performing sub-tasks in which (1) each sub-task is necessary for high performance on the
overall task, (2) each sub-task is implemented by a single subset only, and (3) each subset
executes only a single sub-task. The combination of (1) and (2) suggests that the removal of
one of the subsets from the network would harm performance because the network lacks the
implementation of a necessary sub-task that is localized to the subset. We say that such a
subset is important. Next, given that neurons are frequently understood as feature detectors,
(3) suggests that the neurons in a subset should tend to be strongly activated by inputs which
contain features relevant to the subset’s sub-task. We say that such a subset is coherent.
Measuring importance and coherence thus offers a sense of the degree to which a partitioning
of a network’s neurons contains subsets that meet these prototypical conditions, despite not
perfectly satisfying them.

Results and contributions: To measure these proxies, we take partitionings of neurons
in a network generated by spectral clustering, and analyze them using methods from the
interpretability literature that have conventionally been applied to single neurons. Our key
results are shown in Tables 4.1 and 4.2. We find that these partitions have groups of neurons
that are disproportionately likely to be important compared to random groups of neurons,
but that are not always more important than random groups of neurons on average. We also
find that the groups of neurons in the partitionings are reliably more coherent than random
ones, though only with respect to features other than class label.

By showing that our partitioning methods are able to reveal local specialization, these
results suggest that they can be used to screen for interesting, abstractable subsets of units
and better understand deep networks. Our key contributions are threefold:

1. Introducing two proxies, importance and coherence, to assess whether a partitioning of
a network shows local specialization and identify which subsets of neurons are the most
responsible.

2. Quantifying these proxies by applying single-neuron interpretability methods on subsets
of neurons in an automated fashion.
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3. Applying our methods on the partitions produced by spectral clustering on a range of
neural networks and finding evidence of local specialization captured by these partitions.

Code is available at https://github.com/thestephencasper/local_specialization.

4.2 Related work
In our experiments we combine clustering with interpretability tools to measure importance
and coherence. We use neural lesions (B. Zhou et al., 2018) and feature visualization (Olah
et al., 2017; C. Watanabe, 2019), but in a similar way, other interpretability techniques
including analysis of selectivity (Madan et al., 2020; Morcos et al., 2018), network “dissection”
(Bau et al., 2017; Mu & Andreas, 2020), earth-mover distance (Testolin et al., 2020), or
intersection information (Panzeri et al., 2017) could also be combined with clustering-based
partitionings under a similar framework. Chan et al. (2022) offer a different method of
lesioning neurons for interpretability purposes. Related to the themes of importance and
coherence, Cammarata et al. (2020) demonstrate that feature visualization and analysis of
weights can be used to identify groups of neurons whose functionality is human-interpretable.

4.3 Methods
To evaluate local specialization, our procedural pipeline is as follows. (1) We begin with a
trained neural network; (2) construct a graph from it, treating each neuron as a node; (3)
perform spectral clustering on the graph to obtain a partitioning or “clustering” of neurons
which we then further divide by layer to obtain a “subclustering”; (4) use our proxies for
local specialization to analyze the subclusters, operationalized by lesioning neurons or feature
visualization and comparing them to random subclusters; and (5) aggregate results across the
network to obtain a p value, effect measure, and a quantity which we refer to as the Fisher
statistic. This pipeline is outlined in Figure 4.1 and Figure 4.2, and each step is explained in
detail below.

4.3.1 Generating partitions with spectral clustering

To partition a network into clusters, we use an approach based on Filan et al. (2021)
which consisted of two steps: “graphification”—transforming the network into an undirected,
edge-weighted graph; and clustering—obtaining a partitioning via spectral clustering.

Graphification: To perform spectral clustering, a network must be represented as an
undirected graph with non-negative edges. For MLPs (multilayer perceptrons), each graph
node corresponds to a neuron in the network including input and output neurons. For
CNNs (convolutional neural networks), a node corresponds to a single channel (which we

https://github.com/thestephencasper/local_specialization
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Figure 4.1: Our procedural pipeline. The first three steps generate a partitioning of the
network into “subclusters” which we analyze using (4a) lesion and (4b) feature visualization
methods to measure importance and coherence compared to random subclusters. Finally,
(not shown in the pipeline), we aggregate results to produce Fisher statistics, p values, and
effect measures. These final steps are shown in Figure 4.2.

also refer to as a “neuron”) in a convolutional layer.1 For CNNs, we ignore input, output, and
fully-connected layers when clustering.

For graphification, we test two ways of assigning adjacency edges between neurons: with
weights and with correlations. For weight-based clustering with dense layers, if two neurons
have a weight connecting them in the network, their corresponding vertices are connected by
an edge with weight equal to the absolute value of the network’s weight between the neurons.
For convolutional channels, we connect them by an edge with weight equal to the L1 norm
for the corresponding 2D kernel slice. If layers are connected but with a batch-normalization
layer in between, we mimic the scaling performed by the batch norm operation by multiplying
weights by γ/

√
σ2 + ε where γ is the scaling factor, σ is the moving standard deviation, and

ε is a small constant. Notably, this method of constructing the graph requires no dataset or
runtime analysis of the network.

While graphification via weights only results in connections between neurons in adjacent
layers, doing so with correlations creates more dense graphs. With this method, we connect
the nodes for two neurons with their squared Spearman correlation across a validation set.

1If a unit is used as inputs to multiple layers, as happens in ResNets with skip connections, we consider
these inputs to be separate neurons.
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Spearman correlation gives the Pearson (linear) correlation between ranks and reflects how
well two sets of data can be related by a monotonically increasing function.2 Rather than
using neurons’ post-ReLU outputs to calculate these correlations, we use their pre-ReLU
activations with the goal of extracting richer data from them.3 Again, for convolutional
channels, we take the L1 norm of activations before calculating Spearman correlations. The
fact that we take absolute valued weights or squared correlations to construct edges between
neurons in graphification means that our analysis does not discriminate between positive and
negative associations between neurons.

In addition to graphification via weights versus activations, we also test two scopes with
which to perform clustering: network-wide and layer-wise. For network-wide clustering, we
cluster on one graph for the network as a whole. For layer-wise clustering, we produce a
partitioning for each layer l individually by clustering on the graph of connections between l
and the layers adjacent to l. Ultimately, we run 4 sets of experiments on each network by
clustering {weights, activations} × {network-wide, layer-wise}.

Spectral (sub)clustering: We perform normalized spectral clustering (Shi & Malik,
2000) on the resulting graphs to obtain a partition of the neurons into clusters. For all
sub-ImageNet experiments, we set the number of clusters to k = 16, while for ImageNet-scale
networks, we use k = 32. In subsection 4.4.4, we reproduce a subset of sub-ImageNet
experiments with k ∈ {8, 12} showing that results are robust to alternate choices of k.
Spectral clustering is implemented as specified in subsection 3.2.3 of the previous chapter.

Layers at different depths of a network tend to develop different representations. Therefore,
for network-wide clustering in which clusters of neurons span more than one layer, we analyze
clusters one layer at a time. We call these sets of neurons within the same cluster and layer
subclusters. To ensure comparability between these clusterings when performing layer-wise
clustering, we set the number of clusters per layer to be the same as the number produced in
that layer with network-wide clustering. In our experiments, we compare these subclusters
to other random sets of neurons of the same size in the same layer. We refer to subclusters
identified by the clustering algorithm as “true subclusters” and sets of random neurons as
“random subclusters.” Random subclusters form the natural control condition to test whether
the specific partitioning of neurons exhibits importance or coherence compared to alternative
partitions, while taking account of layer and size.

4.3.2 Analysis pipeline

Overview: In our experiments, we measure the degree to which true subclusters identified
via spectral clustering are more important and coherent than random subclusters of the same
size and layer. Operationalizations are given in Subsections 4.4.2 and 4.4.3, but in brief, the

2We use Spearman rather than Pearson correlation because networks are nonlinear, and there is no
particular reason to expect associations between arbitrary neurons to be linear.

3Although all negative values are mapped to zero by a ReLU, we expect the degree of negativity to carry
information about the possible presence (or lack thereof) of features which the neuron was meant to detect,
especially for networks trained with dropout.
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measure for importance of a subcluster quantifies the performance reduction from dropping
out the neurons in that subcluster, and the measures for coherence quantify the degree to
which the neurons in a subcluster are mutually associated with some feature of an input.
For each subcluster with more than one neuron and which does not include every neuron in
the layer, we calculate a measure of importance or coherence and compare it to that of 19
random subclusters. These experiments and measures are discussed in detail in Section 4.4.
We present two measures of how true and random subclusters compare under these proxies.
First, we calculate a measure of whether true subclusters are disproportionately often more
important or coherent than random subclusters, called the Fisher statistic. This value is our
primary focus. However, for additional resolution, we also calculate an effect measure used
to assess the importance and coherence of the ‘typical’ subcluster. Importantly, the Fisher
statistic and effect measure quantify different things.

Fisher statistics: We wish to test whether spectral clustering methods find subsets of
neurons which satisfy our proxies for local specialization more than if we had simply chosen
random subsets. To do this, for each subcluster measurement we take the percentile of each
true subcluster relative to the distribution of measurements of random subclusters.4 Next, we
use the Fisher method to test whether the subclusters in a single network satisfy our proxies
more than random subsets of neurons. To do so, we first center the subcluster percentiles
around 0.5, which under the null hypothesis would give a granular, unbiased approximation
of the uniform distribution. We then combine the centered percentiles {p1, . . . , pn} into the
Fisher statistic (−1/n)

∑n
i=1 log pi. For reference, the Fisher statistic of a uniform distribution

of percentiles in our setting is 0.98. Figure 4.3 shows example distributions of percentiles and
their Fisher statistics. Note also that since the log function has a larger derivative near 0
than near 1, low percentiles have greater influence on the Fisher statistic, so J- or U-shaped
distributions can also have Fisher statistics greater than 1, even if there are more high
percentiles than low percentiles. For all non-ImageNet architectures, we train and analyze 5
different networks per condition and report the mean Fisher statistic.

The Fisher statistic of n uniformly-distributed random percentiles multiplied by 2n takes
a chi-squared distribution with 2n degrees of freedom. This lets us produce a p value for
each network, testing whether this statistic is higher than the null hypothesis would produce,
which would mean that there were more low percentiles than if subclusters were distributed
uniformly.5 This procedure is illustrated in Figure 4.2. For non-ImageNet architectures, we
need to aggregate the five p values we get per condition, one for each network. To do so, in each
condition, we take the mean of the p values and correct it using the corresponding quantile
of a Bates(n = 5) distribution6 which gives the distribution of the mean of 5 independent
random variables uniformly distributed on [0, 1].7

4For metrics where high values indicate local specialization, we take the percentile of the negative metric,
so that low percentiles consistently indicate local specialization.

5The fact that we coarsely measure percentiles and then center them makes this test conservative because
our statistic is more sensitive to low percentiles than high percentiles.

6The Bates(n) quantile function is Fn(x) =
1
n!

∑⌊nx⌋
k=0 (−1)k

(
n
k

)
(nx− k)n−1 (Marengo et al., 2017).

7We use the Bates method for aggregation here instead of using the Fisher method because in this case,
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Multiple testing correction: Methods above produce a p value for every network
architecture, partitioning method, and local specialization proxy. We next correct for multiple
testing using the Benjamini-Hochberg method (Benjamini & Hochberg, 1995), controlling the
false discovery rate: that is, the expected proportion of rejections of the null hypothesis that
are false positives, where the expectation is taken under the data-generating distribution.
For a false discovery rate α and m ordered p values {p1, . . . , pm}, this procedure chooses
a critical p value as pk where k = argmaxj∈1:m I(pj ≤ jα

m
) where I is an indicator. All p

values greater than pk are deemed not significant at this level. In our case, the critical value
was pk = 0.025. Table 4.1 shows in bold the Fisher statistics (or means thereof) that are
statistically significantly greater than 0.98 after this correction, where significance is taken at
the α = 0.05 level.

In summary, (1) we aggregate each network’s subcluster percentiles using the Fisher
method, yielding a Fisher statistic and a p value, (2) we aggregate the Fisher statistics and p
values across identically-configured replicates of the same experiment by taking the mean
and using the Bates method, respectively, and (3) we correct for multiple comparisons using
the Benjamini-Hochberg procedure.

Effect measures: In addition to p values, we also calculate effect measures which give a
sense of how different results are for true and random subclusters are on average. The effect
measure is the mean over subclusters of 2x/(x+ µ), where x is a true subcluster measure
of importance/coherence and µ is the mean over that of random subclusters.8 We do this
as opposed to simply taking x/µ to avoid division by zero. This results in effect measures
in the interval [0, 2], and which side of 1 they are on indicates whether the true subclusters
are more important/coherent than random ones. For ease of interpretation, note that if
2x/(x + µ) = 1 + y, then x/µ ≈ 1 + 2y for y ≪ 1, so (for example) an effect measure of
1.05 would mean that the measure of a true subcluster was ≈ 10% higher than the expected
measure of a random subcluster. Together with these effect measures, we also report their
standard errors (considering reported effect measures as estimates of the mean network-wide
effect measures over the whole distribution of trained networks).

Differences between Fisher statistics and effect measures: In some of our ex-
periments, the Fisher statistics and effect measures seem to “disagree” with one suggesting
that the network was locally specialized and the other suggesting it was not. This potential
for disagreement is due to the fact that Fisher statistics are based on the percentiles of
subcluster measurements relative to the distribution of those of random subclusters, while
effect measures compare the value of subcluster measurements to the mean value of random
subcluster measurements. When the Fisher statistic seems to indicate local specialization
but the effect measure does not, this means that on the relevant metric, there are more
subclusters than would be expected under the null hypothesis whose metric value is higher
than that of random subclusters, but the “typical” subcluster has a metric value similar to
or less than an average random subcluster. In other words, the partitioning method has

all five p values are from identically configured experiments, and the Bates test is less sensitive to low outliers.
8If x is ever less than 0 for a subcluster, we conservatively replace it with 0.
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detected some subclusters that satisfy our proxies for local specialization, but the typical
subcluster found does not. This is compatible with a J- or U-shaped distribution of subcluster
percentiles. We consider this a positive result, indicating that our partitioning method is
detecting some local specialization.

4.4 Experiments
To show the applicability of our methods at different scales, we experiment with a range of
networks. For small-scale experiments, we train MLPs with 4 hidden layers of 256 neurons
each and small convolutional networks with 3 layers each of 64 neurons followed by a dense
layer of 128 neurons trained on the MNIST (LeCun et al., 1998) dataset. At a mid scale, we
train VGG-style CNNs containing 13 convolutional layers using the architectures of Simonyan
and Zisserman (2015) trained on CIFAR-10 (Krizhevsky, 2009) using the procedure of S. Liu
and Deng (2015), which includes weight decay and dropout for regularization. Finally, for
ImageNet (Krizhevsky, 2009) scale, we analyze pretrained ResNet-18 (He et al., 2016a),
VGG-16, and VGG-19 (Simonyan & Zisserman, 2015) models.

4.4.1 Network training details

We use Tensorflow’s implementation of the Keras API (Chollet et al., 2015; Martín Abadi
et al., 2015). When training all networks, we use the Adam algorithm (Kingma & Ba, 2014)
with the standard Keras hyperparameters: learning rate 0.001, β1 = 0.9, β2 = 0.999, no
amsgrad. The loss function was categorical cross-entropy. For all non-ImageNet networks, we
train 5 identically-configured replicates.

Small MLPs (MNIST): We train MLPs with 4 hidden layers, each of width 256, for 20
epochs with batch size 128. All MLPs achieved a test accuracy on MNIST between 97.6%
and 98.2%. On Fashion-MNIST, they achieved test accuracies between 88.4% and 89.4%.

Small CNNs (MNIST): These networks had 3 convolutional layers with 64 3 × 3
channels each with the second and third hidden layers being followed by max pooling with a 2
by 2 window. There was a final fully-connected hidden layer with 128 neurons. We train them
with a batch size of 64 for 10 epochs. All small CNNs achieved a testing accuracy MNIST
between 99.1% and 99.4%. On Fashion-MNIST, they achieved test accuracies between 91.8%
and 92.4%.

Mid-sized VGG CNNs (CIFAR-10): We implement a version of VGG-16 described
by S. Liu and Deng (2015) and Simonyan and Zisserman (2015). We train these with Adam,
for 200 epochs with a batch size of 128. These are trained using L2 regularization with a
coefficient of 5× 10−4 and dropout with a rate tuned per-layer as done in S. Liu and Deng
(2015) and Simonyan and Zisserman (2015). Training was done with data augmentation which
consisted of random rotations between 0 and 15 degrees, random shifts both vertically and
horizontally of up to 10% of the side length, and random horizontal flipping. Test accuracies
were between 82.8% and 86.6%.
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Large CNNs (ImageNet): We experimented with VGG-16 and 19 (Simonyan &
Zisserman, 2015) and ResNet-18 (He et al., 2016a) networks. Weights were obtained from
the Python image-classifiers package, version 1.0.0.

Table 4.1: Fisher statistics (or means over 5 runs) for (1) lesion-based experiments measuring
importance via overall accuracy drops (Acc. Drop) and coherence via the class-wise range of
accuracy drops (Class Range); and (2) Feature visualization-based experiments in networks
measuring coherence via the optimization score (Vis Score) and the entropy of network
outputs (Softmax H). Each row corresponds to a network paired with a partitioning method.
Fisher statistics above 0.98 indicate that subclusters satisfy our local specialization proxies
disproportionately more than random subclusters do. Values statistically significantly greater
than 0.98 are bolded. Section 4.3.2 details the calculation of these statistics and their p
values. For tables that include p values, see Appendix B.

Lesion Feature Visualization
Network Partitioning Acc. Drop Class Range Vis Score Softmax H

MLP, MNIST

Weight/Net. 2.13 0.91 1.32 0.92
Weight/Layer 2.05 0.91 1.21 1.23
Act./Net. 1.46 1.00 1.34 1.15
Act./Layer 1.69 1.03 1.36 1.12

CNN, MNIST

Weight/Net. 1.29 0.84 1.10 0.93
Weight/Layer 1.10 0.94 1.02 0.99
Act./Net. 1.73 0.70 1.09 0.90
Act./Layer 1.46 0.92 1.05 0.98

VGG, CIFAR-10

Weight/Net. 1.50 2.12 1.46 0.99
Weight/Layer 1.15 1.27 1.00 0.97
Act./Net. 1.40 0.97 2.34 1.08
Act./Layer 1.56 1.03 2.67 1.12

VGG-16, ImageNet

Weight/Net. 2.54 0.49 1.72 1.19
Weight/Layer 2.15 0.56 1.90 1.06
Act./Net. 1.89 0.63 1.82 1.07
Act./Layer 1.66 0.70 1.85 0.98

VGG-19, ImageNet

Weight/Net. 1.91 1.03
Weight/Layer 2.23 1.00
Act./Net. 1.87 1.10
Act./Layer 2.01 0.98

ResNet-18, ImageNet

Weight/Net. 1.42 1.13
Weight/Layer 1.29 0.99
Act./Net. 1.30 0.92
Act./Layer 1.31 0.96
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4.4.2 Lesion experiments

One approach that has been used for understanding both biological (Gazzaniga & Ivry,
2013) and artificial (Casper, Boix, et al., 2021; B. Zhou et al., 2018) neural systems involves
disrupting neurons during inference. We experiment with “lesion” tests in which we analyze
network performance on the test set when a subcluster is dropped out. We then analyze the
damage to the network’s performance. First, we measure importance by taking the drop
in accuracy. Specifically, let θ be the parameter vector of the neural network, c be a set of
neurons, M(θ, c) be a masked version of θ where weights into or out of nodes in c have been
set to 0, and Acc(ϑ,D) be the accuracy of the network parameterized by ϑ on dataset D.
Then, our measure for importance is Acc(θ, test)−Acc(M(θ, c), test), where test is a test
dataset that was not used to construct the activation-based partitionings.

Second, we measure the coherence in a subcluster with respect to class by taking the
range of class-specific accuracy drops. Specifically, let testi be the subset of the test set
with label i, and let ∆(θ, c, i) := Acc(θ, testi)−Acc(M(θ, c), testi) be the drop in accuracy
for examples with label i from lesioning c. Then, this measure of coherence is the range
(maxi ∆(θ, c, i)−mini ∆(θ, c, i)) of accuracy drops over classes. We use this to detect whether
clusters are more crucial for some classes over others, which would suggest that they coherently
act to correctly label those classes.

We use the analysis pipeline from Section 4.3.2 to test for importance and coherence using
these overall accuracy differences and class-wise ranges. In this setting, effect measures > 1
indicate more importance/coherence among true subclusters on average compared to random
ones. Table 4.1 shows Fisher statistics, and Table 4.2 shows effect measure data. Results are
summarized in Section 4.4.6.

4.4.3 Feature visualization experiments

To further analyze coherence, we leverage another set of interpretability techniques based on
feature visualization. We use gradient-based optimization to create an input image which
maximizes the L1 norm of the pre-ReLU activations of the neurons in a subcluster. Letting
the parameter vector be θ and the subcluster be c, we write Act(x, θ, c) for the vector of
pre-ReLU activations of neurons in c in network θ on input x, and denote this optimized
input image as x(θ, c), which approximately maximizes ∥Act(x, θ, c)∥1. The key insight is
that properties of these visualizations x(θ, c) can suggest what roles the subclusters play in
the network.

All visualizations were created using the Lucid9 package. The optimization objective for
visualizing subclusters was the L1 norm of the pre-ReLU inputs for all neurons inside the
subcluster (it was an L1 norm of L1 norms for convolutional feature maps). For small MLPs,
small CNNs, and mid-sized CNNs, we generated images using random jittering and scaling,
and for ImageNet models, we used Lucid’s default transformations which consist of padding,
jittering, rotation, and scaling with default hyperparameters. For all networks, we used the

9https://github.com/tensorflow/lucid

https://github.com/tensorflow/lucid
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Table 4.2: Effect measures and their standard errors for (1) lesion-based experiments measuring
importance via overall accuracy drops (Acc. Drop) and coherence via the class-wise range of
accuracy drops (Class Range); and (2) Feature visualization-based experiments in networks
measuring coherence via the optimization score (Vis Score) and the entropy of network
outputs (Softmax H). Each row corresponds to a network paired with a partitioning
method. Results are calculated as explained in Section 4.3.2. For accuracy drop, class-
wise range and visualization score experiments, an effect measure > 1 corresponds to more
importance/coherence among true subclusters than random ones, while one of < 1 does for
softmax entropy experiments. Entries where the effect measure is more than two standard
errors away from 1 in the direction of local specialization are bolded. Note that ImNet is
short for ImageNet. For tables that include p values, see Appendix B.

Lesion Feature Visualization
Network Partitioning Acc. Drop Class Range Vis Score Softmax H

High→Imp. High→Coh. High→Coh. Low→Coh.

MLP, MNIST

Weight/Net. 1.123± 0.058 0.701± 0.036 1.003± 0.004 1.105± 0.021
Weight/Layer 1.061± 0.048 0.676± 0.029 1.024± 0.004 0.931± 0.016
Act./Net. 0.883± 0.038 0.646± 0.024 1.02± 0.003 0.997± 0.013
Act./Layer 0.929± 0.040 0.687± 0.025 1.026± 0.003 1.011± 0.012

CNN, MNIST

Weight/Net. 0.837± 0.048 0.527± 0.031 0.998± 0.004 1.026± 0.008
Weight/Layer 0.814± 0.046 0.635± 0.033 1.004± 0.003 1.007± 0.007
Act./Net. 1.078± 0.061 0.543± 0.039 0.933± 0.006 1.025± 0.011
Act./Layer 0.939± 0.060 0.625± 0.043 0.925± 0.005 0.970± 0.010

VGG, CIFAR-10

Weight/Net. 0.682± 0.066 0.407± 0.042 0.871± 0.011 1.124± 0.012
Weight/Layer 0.808± 0.041 0.692± 0.033 1.013± 0.006 0.992± 0.012
Act./Net. 0.926± 0.032 0.679± 0.023 1.327± 0.005 0.950± 0.009
Act./Layer 0.956± 0.030 0.695± 0.021 1.379± 0.004 0.930± 0.008

VGG-16, ImNet

Weight/Net. 1.205± 0.050 0.790± 0.010 1.043± 0.005 0.998± 0.001
Weight/Layer 1.168± 0.019 0.825± 0.005 1.076± 0.003 0.991± 0.001
Act./Net. 1.129± 0.026 0.859± 0.006 1.066± 0.003 1.000± 0.001
Act./Layer 1.063± 0.021 0.876± 0.005 1.056± 0.003 1.001± 0.001

VGG-19, ImNet

Weight/Net. 1.061± 0.004 1.003± 0.001
Weight/Layer 1.099± 0.003 1.001± 0.001
Act./Net. 1.046± 0.003 0.996± 0.001
Act./Layer 1.081± 0.002 1.004± 0.001

ResNet-18, ImNet

Weight/Net. 0.926± 0.045 0.957± 0.011
Weight/Layer 0.971± 0.016 0.971± 0.004
Act./Net. 0.979± 0.017 0.977± 0.004
Act./Layer 0.983± 0.014 0.967± 0.004

pixel-based parameterization of the image and no regularization on the Adam optimizer for
100 steps. For visualizations in small MLPs and CNNs, we used versions of these networks
trained on 3-channel versions of their datasets in which the same inputs were stacked thrice
because Lucid requires networks to have 3-channel inputs. However, we show greyscaled
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versions of these in Figure 4.4.
We use two techniques to analyze coherence using these visualizations of subclusters.

First, we analyzed the value of the maximization objective for each image we produced,
∥Act(x(θ, c), θ, c)∥1, which we call the “score” of the visualization. This gives one notion of
how coherent a subcluster may be with respect to input features, because if a single image
can strongly excite an entire subcluster, this suggests that the neurons comprising it are
involved in detecting/processing related features. Second, we obtain a measure of coherence
by analyzing the entropy H(label | x(θ, c); θ) of the softmax outputs of the network when
these images are passed through. If the entropy is low, this suggests that a cluster is coherent
with respect to class labels.

Just as with lesion experiments, we perform analysis using these two methods using the
pipeline from Section 4.3.2 to measure how coherent true subclusters are compared to random
ones.

For visualization score experiments, effect measures > 1 indicate coherence while for the
softmax H experiments, effect measures < 1 indicate coherence. Table 4.1 shows Fisher
statistics, and Table 4.2 shows effect measure data.

4.4.4 Robustness to cluster number

In previous subsections, we only present results from experiments in which the number of
clusters, k, was set to 16 for sub-ImageNet networks and 32 for ImageNet ones. The fact
that we find evidence of local specialization in networks across a range of sizes using k = 16
suggests that detecting it is robust to k. Here, we also present a direct comparison between
results for CIFAR VGGs for k ∈ {8, 12, 16}. Tables 4.3 and 4.4 show these results for lesion
and feature-visualization experiments respectively. In general, whether or not an experiment
resulted in a Fisher statistic or an effect measure suggesting local specialization is consistent
across these values of k.

4.4.5 Redundancy

If multiple neurons in a network are redundant, having similar weights and activations, our
clustering methods will likely group them. These groups of redundant neurons would be
coherent and perhaps important, thereby demonstrating functional locality in a way that
is arguably less interesting than for a non-atomic subtask. However, two pieces of evidence
suggest that redundancy is not the sole driver of our results.

First, activation-based clusterings that group neurons with correlated activity are more
likely to detect redundancy than weight-based clusterings. However, Table 4.1 shows that the
activation-based clusterings are not reliably more important or coherent than weight-based
clusterings, suggesting that the importance and coherence is not only due to redundancy.

Second, in addition to the VGGs trained on CIFAR-10 with L2 regularization and dropout
that we analyze in Table 4.1, we also train and analyze unregularized versions. Since dropout
encourages redundant information to be encoded in multiple neurons, and L2 regularization
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Table 4.3: Comparison for different cluster number values in VGG networks for lesion-based
experiments. Results are shown for k ∈ {8, 12, 16}. Fisher statistics are means over 5 runs.
Each Fisher statistic which is significant at the α = 0.05 after Benjamini-Hochberg correction
is bold. Effect measures are reported together with their standard errors. An effect measure
> 1 corresponds to more importance/coherence among true subclusters than random ones.
All above 1 are bold.

Importance: Acc. Drop Coherence: Class Range
Network Partitioning Fisher Effect Meas. Fisher Effect Meas.
Cluster number (k) stat. High→Imp. stat. High→Coh.

Weight/Net. 1.85 0.910± 0.102 1.94 0.270± 0.045
VGG, CIFAR-10 Weight/Layer 1.03 0.854± 0.047 1.17 0.828± 0.039
k = 8 Act./Net. 1.49 0.966± 0.038 0.98 0.748± 0.030

Act./Layer 1.77 1.051± 0.035 0.93 0.752± 0.027
Weight/Net. 1.63 0.737± 0.078 2.01 0.388± 0.045

VGG, CIFAR-10 Weight/Layer 1.05 0.867± 0.042 1.09 0.736± 0.035
k = 12 Act./Net. 1.44 0.901± 0.035 1.04 0.721± 0.028

Act./Layer 1.57 0.994± 0.032 0.96 0.694± 0.023
Weight/Net. 1.50 0.682± 0.066 2.12 0.407± 0.042

VGG, CIFAR-10 Weight/Layer 1.15 0.808± 0.041 1.27 0.692± 0.033
k = 16 Act./Net. 1.40 0.926± 0.032 0.97 0.679± 0.023

Act./Layer 1.56 0.956± 0.030 1.03 0.695± 0.021

encourages each neuron to depend on many previous-layer neurons, these unregularized
networks should have less redundancy than those analyzed in the main paper. Our results in
Table 4.5 show unregularized networks as having more importance and coherence in many
instances, suggesting that our measures are not just picking up redundancy.

4.4.6 Findings

Our partitionings identify important subclusters. Fisher statistics for lesion accuracy
drops are high and significant, as shown in Table 4.1, indicating that subclusters are more
likely to be highly important relative to random groups of neurons. However, as shown in
Table 4.2, not all of the corresponding effect measures are above one, even when the Fisher
statistic is significantly greater than 0.98. This indicates that when we detect that an unusual
number of subclusters are important, this does not necessarily correspond to importance on
average.

Our partitionings identify subclusters that are coherent w.r.t. input features
but not class label. Class-specific measures of coherence, class-wise lesion accuracy drop
range and output entropy, showed significant coherence in almost no conditions. The class-
wise range measure even tended to show that subclusters were less coherent w.r.t. class
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Table 4.4: Comparison for different cluster values in VGG networks for feature visualization-
based experiments. Results are shown for k ∈ {8, 12, 16}. Fisher statistics are means over 5
runs. Each mean Fisher statistic which is significant at the α = 0.05 level after Benjamini-
Hochberg correction is bold. Effect measures are reported together with their standard
errors. For vis score tests, an effect measure > 1 corresponds to more coherence, and for
softmax H tests, one of < 1 corresponds to more coherence. All effect measures on the side
of 1 indicating more coherence are bold.

Coherence: Vis Score Coherence: Softmax H
Network Partitioning Fisher Effect Meas. Fisher Effect Meas.
Cluster number (k) stat. High→Coh. stat. Low→Coh.

Weight/Net. 1.87 1.011± 0.016 1.18 1.028± 0.017
VGG, CIFAR-10 Weight/Layer 0.83 0.974± 0.005 0.90 1.059± 0.015
k = 8 Act./Net. 2.61 1.345± 0.006 1.02 0.940± 0.010

Act./Layer 2.72 1.358± 0.005 1.06 0.946± 0.009
Weight/Net. 1.59 0.959± 0.013 0.89 1.106± 0.013

VGG, CIFAR-10 Weight/Layer 0.96 0.993± 0.005 1.12 0.945± 0.012
k = 12 Act./Net. 2.60 1.363± 0.005 1.12 0.917± 0.009

Act./Layer 2.73 1.364± 0.004 1.07 0.928± 0.008
Weight/Net. 1.46 0.871± 0.011 0.99 1.124± 0.012

VGG, CIFAR-10 Weight/Layer 1.00 1.013± 0.006 0.97 0.992± 0.012
k = 16 Act./Net. 2.34 1.327± 0.005 1.08 0.950± 0.009

Act./Layer 2.67 1.379± 0.004 1.12 0.930± 0.008

than random groups of neurons. However, subclusters were reliably coherent as measured
by visualization score, both as quantified by Fisher statistics and effect measures. Together,
these results offer evidence that subclusters tended to perform coherent sub-tasks, but not in
a class-specific way.

All partitioning methods yield similar results. In Table 4.1, we find no clear
difference between the Fisher statistics of activation-based and weight-based clusterings, or
between layer-wise and network-wide clusterings. This is somewhat unexpected: one might
have predicted that weight-based methods’ lack of runtime information or layer-wise methods’
lack of global information would lead to lower quality clusterings, but this was not the case.

4.5 Discussion
Contributions: In this work, we introduce several methods for partitioning networks into
clusters of neurons and analyzing the resulting partitions for local specialization. Key to this
is measuring proxies: importance as a means of understanding what parts of a network are
crucial for performance, and coherence as a measure for how much the neurons in a part work
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Table 4.5: Comparison for regularized and unregularized CNN-VGG networks for lesion-based
experiments. Results are shown for k ∈ {8, 12, 16}. Fisher statistics are means over 5 runs.
Each Fisher statistic which is significant at the α = 0.05 after Benjamini-Hochberg correction
is bold. Effect measures are reported together with their standard errors. An effect measure
> 1 corresponds to more importance/coherence among true subclusters than random ones.
All above 1 are bold.

Importance: Acc. Drop Coherence: Class Range
Network Partitioning Fisher Effect Meas. Fisher Effect Meas.

stat. High→Imp. stat. High→Coh.

Weight/Net. 1.50 0.682± 0.066 2.12 0.407± 0.042
VGG, CIFAR-10 Weight/Layer 1.15 0.808± 0.041 1.27 0.692± 0.033
Regularized Act./Net. 1.40 0.926± 0.032 0.97 0.679± 0.023

Act./Layer 1.56 0.956± 0.030 1.03 0.695± 0.021
Weight/Net. 1.27 1.033± 0.007 1.13 0.995± 0.015

VGG, CIFAR-10 Weight/Layer 0.94 0.994± 0.004 0.92 1.042± 0.011
Unregularized Act./Net. 1.48 1.032± 0.003 1.25 1.022± 0.011

Act./Layer 1.76 1.049± 0.003 1.17 1.077± 0.010

Table 4.6: Comparison for regularized and unregularized CNN-VGG networks for feature
visualization-based experiments. Results are shown for k ∈ {8, 12, 16}. Fisher statistics are
means over 5 runs. Each mean Fisher statistic which is significant at the α = 0.05 level after
Benjamini-Hochberg correction is bold. Effect measures are reported together with their
standard errors. For vis score tests, an effect measure > 1 corresponds to more coherence,
and for softmax H tests, one of < 1 corresponds to more coherence. All effect measures on
the side of 1 indicating more coherence are bold.

Coherence: Vis Score Coherence: Softmax H
Network Partitioning Fisher Effect Meas. Fisher Effect Meas.

stat. High→Coh. stat. Low→Coh.

Weight/Net. 1.46 0.871± 0.011 0.99 1.124± 0.012
VGG, CIFAR-10 Weight/Layer 1.00 1.013± 0.006 0.97 0.992± 0.012
Regularized Act./Net. 2.34 1.327± 0.005 1.08 0.950± 0.009

Act./Layer 2.67 1.379± 0.004 1.12 0.930± 0.008
Weight/Net. 1.27 1.033± 0.007 1.13 0.995± 0.015

VGG, CIFAR-10 Weight/Layer 0.94 0.994± 0.004 0.92 1.0424± 0.011
Unregularized Act./Net. 1.48 1.032± 0.003 1.25 1.022± 0.011

Act./Layer 1.76 1.049± 0.003 1.17 1.077± 0.010
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together. We rigorously evaluate these proxies using statistical methods, finding that even
the weights-only clustering methods are able to reveal clusters with a significant degree of
importance and coherence compared to random ones. In each network, we found evidence that
our partitioning methods were able to identify specialized subsets of neurons via measuring
accuracy drops under lesions (importance) and feature visualization scores (coherence). To
the best of our knowledge, ours is the first method which is able to quantitatively assess the
local specialization of neural networks in a way that does not require a human in the loop.

Relation to other research: Having effective tools for interpreting networks is important
for understanding AI systems, in particular by helping to diagnose failure modes (e.g., Carter
et al. (2019), Casper, Nadeau, et al. (2021), and Mu and Andreas (2020)). Our work relates
to this goal, though indirectly. The tests we perform are based on data from lesions and
feature visualizations, both of which are interpretability tools. But rather than directly using
these data to interpret subclusters, our focus is one step higher: on automatically testing
whether these subclusters are worth analyzing at all and finding ways to screen for subclusters
that should be the subject of deeper investigation. By showing that the partitioning methods
we use generate partitionings that align with local specialization, these results suggest that
clustering neurons offers a useful level of abstraction through which to study networks.

Limitations: One limitation of our work is a lack of assurance that importance and
coherence are reliably strong proxies for human-comprehensible forms of local specialization.
While they are sufficient to imply some degree of abstractability with respect to the task at
hand, they may not always be particularly useful for understanding the network. Relatedly,
our approach is also not designed to identify the sub-task performed by a group of neurons, nor
does it identify relationships between groups. Given these limitations, the tools we introduce
should be seen as methods for screening a network for evidence of local specialization overall
and for particular sets of neurons where sub-task functionality is localized. A final notable
limitation is that these methods do not offer tools for building more modular networks beyond
techniques for measuring local specialization. Future work toward this may benefit from
our techniques but should also hinge on architectural or regularization-based methods for
promoting independent operation of groups of neurons.

Conclusion: While we make progress toward better understanding how networks can be
understood, neural systems are still complex, and more insights are needed to develop useful
understandings of them. The ultimate goal should be to develop reliable methods for building
models which perform well and also lend themselves to faithful abstract interpretations.
We believe that these methods should involve testing networks for local specialization and
investigating the functions that important or coherent parts of the network specialize in.
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Figure 4.2: Our extended procedural pipeline. This figure expands Figure 4.1 and
shows the successive steps after generating a partitioning of subclusters (step 3 in Figure
4.1). After performing either lesion or feature visualization analysis, the results from each
true subcluster and its random subclusters are aggregated to produce p values and effect
measures. For simplicity, only the analysis for the lesion experiment is presented, but the
same pipeline is used for the feature visualization experiments.

For each true subcluster i from the generated partitioning:

3’. Random Subcluster

4a’. Analysis: Lesion

3. True Subcluster

4a. Analysis: Lesion

Compute the drop in accuracy
δtrue

Compute the drop in accuracy
δrand

Generate m random subclusters 
within the same layer and having 

the same number of neurons as the 
true subcluster:

Drop in accuracy value

Combine m samples of δrand
to form the random 

subcluster distribution

5b. Compute the percentile 
of subcluster i: pi

5a. Compute the effect 
measure of subcluster i:
di = 2 δtrue / (δtrue + μrand)

Mean: μrand

6b. Combine the subclusters’ 
percentiles {pi} by computing the 
the Fisher statistic

6a. Combine the subclusters’ effect 
measures {di} by taking their mean 
and computing the average effect 
measure
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Figure 4.3: Illustration of Fisher statistics of various percentile distributions. A
VGG network trained on CIFAR-10 is partitioned using four methods ({weights, activations}
× {network-wide, layer-wise}) and analyzed for coherence (see discussion of visualization
scores in Section 4.4.3) to produce the collection of percentiles for each subcluster. This
figure shows histograms of the percentile distribution for each clustering, and their associated
Fisher statistics. Recall that a lower percentile means that a true subcluster is more coherent
than random subclusters while controlling for layer and size. The activation-based clusterings
have disproportionately many low percentiles, and Fisher statistics greater than 2. Table 4.1
shows that these trends are statistically significant when aggregated over five models.
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(a)

(b)

(c)

(d)

(e)

Figure 4.4: Example feature visualizations for true and random subclusters: In the
left column are shown true subcluster visualizations, and in the right column are visualizations
of subclusters of random neurons of the same size in the same layer. (a) MLP, MNIST; (b)
CNN, MNIST; (c) VGG, CIFAR-10; (d) VGG-16, ImageNet; (e) VGG-19, ImageNet.
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Chapter 5

Feature Representation in Reward Models

5.1 Introduction
In Chapters 3 and 4, we developed a frame on neural network interpretability that emphasized
cluster structure in the learned network weights. This is encouraging as a step towards being
able to think of neural networks as structured programs, as described in the introduction
of the deep learning textbook by Goodfellow et al. (2016). However, one negative result of
Chapter 4 was that we do not see structures that are differentially useful for specific output
classes. This is in some tension with the standard view of neurons as learning high-level
human-comprehensible features, since one would expect some of those features to be more
relevant for some output classes than others.

In this chapter, we provide a case study of networks trained to predict rewards in the
CoinRun environment: a platformer game where the agent must move their sprite to a coin
at the end of the level, without jumping onto an enemy or into lava (Cobbe et al., 2020).
Reaching the coin, jumping on an enemy, or jumping into lava immediately ends the game.
Transitions where the agent reaches the coin receive a reward of 10, and all other transitions
receive a reward of 0. Examples of transitions are shown in Figure 5.1. Visualizations of the
final neuron, which reward predictions are read off of, reliably failed to indicate a sensible
representation of whether the agent sprite had reached the coin. Indeed, the networks could
not be probed for a high-accuracy linear representation of distance from the agent sprite to
the coin, and were able to be fooled into assigning no reward to transitions where the agent
reached the coin. Furthermore, they assign high reward to transitions where the observation
and next observation are random pixels. We also see similar problems in networks trained on
similar environments.

The significance of this chapter is two-fold. Firstly, it shows difficulty for the hypothesis
that networks represent human-comprehensible features of relevance for determining what
the correct output should be. We repeatedly show failures of this hypothesis: adversarial
examples show that such representations either do not exist or are not used appropriately;
and probing indicates that we do not see linear representations of features that are crucial
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(a) Observation of a transition with reward
10.

(b) Next observation of a transition with re-
ward 10.

(c) Observation of a transition with reward 0.
(d) Next observation of a transition with re-
ward 0.

Figure 5.1: Examples of CoinRun transitions
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to the way we would hope networks compute reward. This reinforces the aforementioned
difficulties posed by the results of Chapter 4.

Secondly, it serves as a toy example motivating goal misgeneralization concerns. If we
imagine that these reward nets were to act as sub-systems of an agent, this agent would
face problems of goal misgeneralization in environments containing our manual adversarial
examples, or even environments where it is possible for the agent to supply itself with random
pixels. These issues exist despite the fact that the reward networks are trained on the true
underlying reward, which is more reward access than is usually provided (especially in cases
where the relevant reward function is implicit in human judgements and not able to be
explicitly written down (Skalse et al., 2023)), and despite the fact that the environment is
designed to be “ideal for evaluating generalization, as distinct training and test sets can be
generated for each environment”, with the authors boasting that “The environments’ intrinsic
diversity demands that agents learn robust policies; overfitting to narrow regions in state
space will not suffice” (Cobbe et al., 2020). These claims are true as far as they go, yet
they do not suffice for learning reward functions which generalize to large distributional
shifts. This, together with the difficulty of understanding the networks with standard tools
based on the feature representation paradigm, motivates the need for a different frame for
interpretability.

Code for experiments conducted in this chapter is available at https://github.com/
HumanCompatibleAI/reward-function-interpretability.

5.2 Related work
Reward models have begun to play a large role in AI practice. Christiano et al. (2017)
introduced the method of reinforcement learning with human feedback, which has been used
in state of the art language models such as ChatGPT (OpenAI, 2022), and a variant has been
used in Claude, another state of the art model (Anthropic, 2023; Bai et al., 2022). Given
the importance of reward models, there has been some interest in applying interpretability
techniques to them (Jenner & Gleave, 2022; Michaud et al., 2020; Russell & Santos, 2019),
as well as to policy networks that include a value head (Hilton et al., 2020).

This chapter also builds on a wealth of literature using linear probing as an interpretability
technique, which was introduced by Alain and Bengio (2017). Linear probing has been used
in a variety of contexts, but perhaps most relevantly to the AlphaZero chess engine (Silver
et al., 2018) where it showed representations of features highly relevant to evaluating the
state of the game like “is the playing side in check” and “can the other side checkmate the
playing side in one move” (McGrath et al., 2022).

The chapter also uses the method of feature visualization, introduced by Zeiler and Fergus
(2014). In particular, we use feature visualization by optimizing an input image to maximize
an activation of the network, which was pioneered by Olah et al. (2017). We also use the
related method of adversarial training (Mądry et al., 2018). In the context of reward learning,
it has conceptually inspired the adversarial inverse reinforcement learning paradigm (Fu et al.,

https://github.com/HumanCompatibleAI/reward-function-interpretability
https://github.com/HumanCompatibleAI/reward-function-interpretability
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2018), although we use a different adversarial model). It has been also tested by Ziegler et al.
(2022) on domains where the notion of “failure” requires human evaluation.

Related to our findings about networks not representing distances, R. Liu et al. (2018) have
written about the difficulties convolutional neural networks have in representing coordinates
of pixels.

5.3 Reward nets we trained
The primary environment that reward networks were trained on was CoinRun (Cobbe et al.,
2020). Reward networks were trained by supervision, using a loss function of mean squared
error (MSE), on a collection of rollouts of a policy trained with reinforcement learning. This
dataset had approximately 1 million transitions: 900,173 to train on, and 100,019 to test on.
93.6% of trajectories ended with a non-zero reward, and there were 9,925 trajectories in the
whole dataset, meaning that 0.93% of transitions were associated with a non-zero reward.
This means that the MSE incurred by always guessing the mean reward on the dataset is
0.92.

The network architecture was deliberately overparameterized, to maximize the network’s
ability to represent relevant quantities. There were 5 hidden convolutional layers with 96,
256, 384, 384, and 256 channels respectively. This was chosen to mirror the convolutional
portion of the AlexNet architecture (Krizhevsky et al., 2012). All filters had a 3 by 3 receptive
field and used stride 1, with enough padding to maintain the height and width dimensions
throughout the network—no max-pooling or dropout was used. After the final convolutional
layer, the channels were averaged over their spatial dimension, and then linearly mapped
to the output. Networks were trained with the Adam optimizer (Kingma & Ba, 2014) with
learning rate 0.001 and batch size 128. Their input was the observation and next observation,
and they output a vector of estimated rewards, one per action, where the reward of the action
actually taken in a transition was regressed on.

Two main networks were trained on the CoinRun data: one for 15 epochs, achieving a test
loss of 0.046, and one for 40 epochs, achieving a test loss of 0.038. It should be noted that
training runs using these hyperparameters seemed to face a significant amount of variance in
how much the loss went down, so several were required to get these two trained networks.

In addition, another reward network of the same architecture was trained on Heist: a
game where the agent has to solve a maze by collecting keys and using them to unlock doors
so that it can reach a diamond. An observation from Heist is shown in Figure 5.2. Similarly
to CoinRun, transitions where the agent reaches the diamond have reward 10 (and cause the
game to end), and all other transitions have reward 0. The dataset was generated by rolling
out a reinforcement learning policy for 3,007 episodes, 20.3% of which ended in a non-zero
reward, comprising 2,622,147 transitions in total. Unlike the CoinRun networks, this dataset
was then pruned by discarding ∼95% of zero-reward transitions, so that after pruning, 0.46%
of transitions had non-zero reward. This resulted in a final dataset of 118,598 transitions
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in the training set, and 13,177 in the test set. On this dataset, always guessing the mean
reward would incur a MSE loss of 0.4.

Like in CoinRun, Adam was used with a batch size of 128 and a learning rate of 0.001. A
network was trained for 1,119 epochs which achieved a test loss of 0.012. Note that this proved
to be more epochs than necessary: essentially the same loss was achieved after approximately
165 epochs.

5.4 Visualization
Our initial plan to understand these networks was to visualize their output neurons, in the
manner of Olah et al. (2017), in order to better grasp what they ‘thought’ the cause of reward
was. We describe in detail the results of visualizing the 15-epoch network, but other networks
yielded similar results1.

The first method was synthesizing inputs de novo by optimization in Fourier space.
Namely, inputs are initialized with each Fourier mode drawn from a normal distribution
with mean 0 and standard deviation 1. These Fourier components are then optimized to
maximize the reward assigned to the input by the network. Specifically, this is done using the
Adam algorithm (Kingma & Ba, 2014) for 512 iterations with learning rate 0.05. Before each
forward pass the input is randomly translated by up to 8 pixels vertically and horizontally, as
an attempt to ensure that the final image is not “overfit”. Each action would have an input
synthesized to maximize the reward association with that action.

This process produced images with predicted rewards of between 200 and 1,200: the
average predicted reward of an image was 700, and the standard deviation was 240. Images
would tend to look like Figure 5.3: the observation and next observation would have “in-
focus” regions with roughly the same shape, and pink turning to cyan in those regions. The
remainder of the images are shown in Figures C.1 and C.2.

One might think that the network was merely picking up on pink-to-cyan transitions, but
monochrome pink observations followed by monochrome cyan observations did not produce
high predicted reward. Similarly, given the random-looking nature of the images, one might
think that the network is merely sensitive to the statistics of pixel values. To test this, we
randomly scrambled the pixels of these optimized images, and fed the scrambled images into
the networks. These scrambled images typically had predicted rewards between 2 and 18:
significantly lower than their original images, but still competitive with the highest-reward
images in the training dataset.

The second visualization method used was to start with dataset examples the network
assigned predicted reward ∼10 to, and to then optimize those images in pixel space for
predicted reward. This would hopefully indicate what aspect of those dataset examples the
network ‘thought’ was valuable. A similar method was used as for the de novo synthesis:
random translations of up to 8 pixels were applied, and the optimization method was the

1Also, all visualizations depicted are of action 0, which is simultaneously pressing the ‘down’ and ‘left’
arrow keys.
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Figure 5.2: An observation from Heist. The agent (whose sprite is the white, orange, and grey
pixellated blob near the top) must gather keys of various colours to fit in locks of matching
colours to make it to the diamond (the yellow pixels below the red lock).
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(a) Observation (b) Next observation

Figure 5.3: Optimized input for the 15-epoch reward model for CoinRun. This transition had
predicted reward 724. Note that the presence of high-contrast shapes at the same location in
the observation and next observation that appear to be in focus, and a colour transition from
yellow and pink to cyan.

Adam optimizer with learning rate 0.05. The result was that as the number of gradient steps
grows, a pixellated mass appears around the agent sprite and the coin, and grows to take
up a larger and larger proportion of the frame (see Figures 5.4, 5.5, 5.6, 5.7, and 5.8). This
process eventually yields a predicted reward of over 1,000, caused by images that almost
look like random images, although they retain the move from magenta pixels to cyan pixels
characteristic of results of the de novo method.

Because observations in this game are centred around the agent, these results were
ambiguous between the agent sprite and coin playing a special role and the centre of the
image playing that special role. To disambiguate, we re-ran the process starting with synthetic
images where the agent sprite and the coin were translated to the right of the frame, which
the network also assigned predicted reward ∼10 to (see Section 5.6 for more details on these
images). On these images, we get a growing blob centred around the agent sprite and the
coin, indicating that they do play a special role in the picture, rather than it just being a
matter of the centre of the image (see Figures 5.9, 5.10, 5.11, 5.12, 5.13, and 5.14).

Broadly, these visualization attempts reveal that the network is not relying on an incredibly
simple pixel-level proxy, that it ‘likes’ to see the same objects in the same place between
frames, and that it cares about the region around the sprite and the coin, but a significant
amount of mystery remains. Perhaps the clearest lesson is that these networks are not exactly
learning the desired reward function, but have inputs on which they predict a much too high
reward.
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(a) Observation (b) Next observation

Figure 5.4: Observation of a high-scoring transition after 8 steps of gradient descent, with
predicted reward 50. Observe that the area around where the agent sprite and coin would be
have become fuzzy.

(a) Observation (b) Next observation

Figure 5.5: Observation of a high-scoring transition after 16 steps of gradient descent, with
predicted reward 96. The perturbed area around the agent sprite and coin has changed more
in colour and grown larger.
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(a) Observation (b) Next observation

Figure 5.6: Observation of a high-scoring transition after 32 steps of gradient descent, with
predicted reward 158. The perturbed area has become even larger, and is no longer as
circular.

(a) Observation (b) Next observation

Figure 5.7: Observation of a high-scoring transition after 64 steps of gradient descent, with
predicted reward 229. The perturbed area has grown even larger, more brightly coloured,
and less circular.
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(a) Observation (b) Next observation

Figure 5.8: Observation of a high-scoring transition after 128 steps of gradient descent, with
predicted reward 1,401. Essentially the whole frames are taken up by random-looking pixels,
although note that the observation has more yellow and pink where the next observation has
more cyan, evoking Figure 5.3.

(a) Observation (b) Next observation

Figure 5.9: Observation of a synthetic transition with the sprite and coin translated to the
left, with predicted reward 9.8.
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(a) Observation (b) Next observation

Figure 5.10: Observation of a synthetic transition with the sprite and coin translated to the
left after 8 steps of gradient descent, with predicted reward 25. A fuzzy ball has appeared
around the sprite and coin.

(a) Observation (b) Next observation

Figure 5.11: Observation of a synthetic transition with the sprite and coin translated to the
left after 16 steps of gradient descent, with predicted reward 46. The fuzzy ball has grown.
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(a) Observation (b) Next observation

Figure 5.12: Observation of a synthetic transition with the sprite and coin translated to the
left after 32 steps of gradient descent, with predicted reward 125. The fuzzy ball has grown
further, and is now no longer circular.

(a) Observation (b) Next observation

Figure 5.13: Observation of a synthetic transition with the sprite and coin translated to the
left after 64 steps of gradient descent, with predicted reward 130. The perturbed area is now
more brightly coloured.
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(a) Observation (b) Next observation

Figure 5.14: Observation of a synthetic transition with the sprite and coin translated to the
left after 128 steps of gradient descent, with predicted reward 1,217. Both frames have nearly
entirely been taken up by random-looking pixels, although note that the observation has more
yellow and pink pixels, while the next observation has more cyan pixels, evoking Figure 5.3.

5.5 Random noise
Inspired by the ‘visualizations’ produced in Section 5.4 looking like random pixels, we wanted
to assess how our networks would assign reward to observations composed of random pixels.
Specifically, we generated images by drawing each RGB value of each pixel independently
from a normal distribution of mean 0.5 and variance 1, clipped to have values between 0 and 1.
See Figure 5.15 for what such images looks like. There were two variants of this experiment:
firstly, we used different random images for the observation and the next observation; and
secondly, we used the same random image for both. This allowed us to determine to what
extent any effect found was due to a large difference between the observation and next
observation, rather than just that the observation and next observation looked random.

Our broad observation is that reward networks reliably predicted positive reward for
random noise observations—in fact, often this reward was competitive with the maximum
reward available in the game. Results are shown in Table 5.1.

5.6 Manual adversarial examples
In order to further probe the CoinRun reward networks and test hypotheses of how they
could be operating, we manually produced adversarial examples of two different types. Each
kind was instantiated by 16 different examples, all modifications of the same set of 16 original
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Figure 5.15: Two examples of images with IID normal pixels.

CoinRun, 15 epochs CoinRun, 40 epochs Heist

Different 7.3± 6.3 40.1± 15.5 85.2± 25.2
Same 9.9± 6.2 70.5± 19.4 3.0± 3.7

Table 5.1: Rewards assigned to random noise inputs by different networks, expressed as mean
± standard deviation. Different means that the observation and next observation are different
random images, while same means that they are the same. Evaluated on a dataset of 100
random images. The reward predicted for each action on a single input is included separately
in the calculation of means and standard deviations.

transitions where the agent in fact reached the coin, and the reward networks predicted
rewards of ∼10. The original examples, as well as each manual adversarial example, are
shown in appendix C.2. That section also includes edits to images that were made in an
attempt to fool the reward networks, but did not appear to succeed in doing so. Image
editing was done using the GIMP program (The GIMP Development Team, 2023).

The first type involved translating the coin and the sprite to the left (Figure 5.16). This
was designed to test whether the reward networks are sensitive either to the location of the
sprite and coin relative to the wall, or to their location in the image.

The second type involved placing the coin above the agent sprite, and having the agent
sprite jump up to meet the coin (Figure 5.17). This was designed to test whether the reward
network was overly sensitive to the arrangement of the coin and the agent sprite, as perhaps
suggested by the region of the coin and the sprite seeming to be crucial in Section 5.4. Note
that it could also suggest sensitivity to the coin’s proximity to the ground, or unnatural
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(a) Observation of first transition. (b) Next observation of first transition.

(c) Observation of second transition. (d) Next observation of second transition.

Figure 5.16: Two manually edited CoinRun transitions, where the agent sprite and the coin
have been translated to the left.
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(a) Observation of first transition. (b) Next observation of first transition.

(c) Observation of second transition. (d) Next observation of second transition.

Figure 5.17: Two manually edited CoinRun transitions, where the agent sprite and coin have
been moved so that the agent is jumping up to the coin.

vertical position of the agent sprite in the image (since the image is still centred on the
location of the agent sprite prior to editing of the image).

For both types of manual adversarial example, we consider the “true” reward to be 10,
because the sprite in fact reaches the coin.

The rewards predicted by the various CoinRun networks for the various manual adversarial
examples are shown in Table 5.2. Overall, translations somewhat fooled the networks, but
rearranging the coin and the sprite caused them to almost uniformly assess the transitions as
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CoinRun, 15 epochs CoinRun, 40 epochs

Original 9.7± 1.3 9.7± 0.6
Translated 6.0± 3.3 7.6± 2.6
Rearranged 0.15± 0.51 0.3± 1.1

Table 5.2: Rewards assigned to manual adversarial examples by different networks, expressed
as mean ± standard deviation. Original refers to the original examples that were not manually
edited, Translated refers to examples where the agent sprite and coin have been translated to
the left, and Rearranged refers to examples where the coin has been placed above the agent
sprite.

having zero reward. This provides a further demonstration of transitions that these reward
networks misassess, but this time a more naturalistic example. It also demonstrates that
these networks cannot be representing and properly using the high-level concept of distance
from the agent sprite to the coin, since that would be sufficient to correctly predict the reward
of these transitions.

5.7 Probes
In Section 5.6, we found failures that suggested that the reward networks were either not
representing the distance from the agent sprite to the coin, or not using that representation
correctly. In this section, we tested whether the network was linearly representing this
distance (or some simple function of it) by training linear probes. This was applied not only
to the networks trained on CoinRun, but also the one trained on Heist, where the probes
were instead trained on the distance from the agent sprite to the diamond.

5.7.1 Methods

For all networks, we probed for the distance between the agent sprite and the goal2, the
squared distance, 1 divided by the distance, and 1 divided by the squared distance. For the
Heist network, we also train probes on the x- and y-components of the distance from the
agent sprite to the goal.

In CoinRun, the coin is often not visible on the screen, meaning that it would be
uninformative to probe for the actual distance from the agent sprite to the coin (and functions
thereof). Instead, we took the relevant function of the distance and capped it at the maximum
value it could possibly assume while having the coin still be visible on the screen. For the
distance, this cap was 18.4, and for the squared distance, it was 338.0. The inverse distance
and inverse square distances were capped at 5.0 in order to avoid overflow problems, although

2That being the coin in the case of CoinRun and the diamond in the case of Heist.
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the game functioning properly should never have allowed values of those functions to be so
high. Probing with these caps should work as long as the network represents the relevant
function of observed distance gated by whether the coin is visible, as well as a feature
indicating whether the coin was visible or not.

Indexing the layers such that the input is -1 and the result of the first convolution is layer
0, we probed layers 1, 2, 3, and 4, always after the application of the activation function3.
The probe head involved average-pooling the layers, and then applying a linear function
to predict the output. Probes were always trained using the Adam optimizer with default
hyperparameters. Both for CoinRun and for Heist, they were trained on 3,007 episode rollouts.
For CoinRun, this was 895,489 transitions, and for Heist, it was 2,622,272 transitions. For
both CoinRun and Heist, 10% of these transitions held out as a test set. Probes were trained
for different numbers of epochs, usually between 4 and 10, depending on how many seemed
necessary to reach convergence.

The mean squared error of the probes was compared against two baselines: always guessing
the mean value of the probed variable, and a probe trained on a randomly-initialized neural
network. This helped determine whether the trained network was representing the probed
variables any more than a random network could be said to represent them—which is not
necessarily a trivial baseline, since random features can be useful for regression (Rahimi
& Recht, 2007). Since the loss of probes trained on random networks to predict certain
features (namely, everything but the squared distance) did not vary much by layer, for some
experiments a probe was only trained on the final layer of a random network for those features,
in order to speed them up.

On CoinRun networks, we also trained ‘filtered probes’ for the distance and squared
distance on the subset of data where the coin was visible—that is, on 39,492 transitions
where the distance between the agent sprite and the coin was less than 6. This answered
a somewhat different question: do networks linearly represent (a simple function of) the
distance from the agent sprite to the coin in a way that only has to work well when the coin
is visible?

5.7.2 Results

Results of training probes on the 15-epoch CoinRun network are shown in Table 5.3, and of
training probes on the 40-epoch CoinRun network are shown in Table 5.4. Results of training
probes on the Heist network are shown in Table 5.5.

On CoinRun nets, we seem to consistently see some sort of representation of the agent-
sprite-to-coin distance in layer 2, and on the Heist network we see some sort of representation
of the squared agent-sprite-to-diamond in layers 1, 2, and 3, but these representations do not
appear to be especially precise: test loss is in no instance less than half of the lowest baseline
loss.

3Note that layer 4 is the final hidden layer of each network.
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Distance Squared distance Inverse distance Inverse squared distance

Mean 17.2 1.12× 104 0.0047 0.0027
Layer 1 15.4 (17.0) 1.13× 104 (1.3× 104) 0.0040 (0.0042) 0.0026 (0.0026)
Layer 2 11.4 (16.9) 9.4× 103 (1.2× 104) 0.0033 (0.0042) 0.0026 (0.0026)
Layer 3 17.7 (17.2) 9.9× 103 (1.2× 104) 0.0043 (0.0042) 0.035 (0.0024)
Layer 4 17.1 (17.2) 1.2× 104 (1.1× 104) 0.0042 (0.0046) 0.0022 (0.0027)

Table 5.3: Test losses of training probes on the 15-epoch CoinRun network. Mean refers
to the loss obtained from always guessing the mean value of the attribute in question. All
probes are trained with batch size 128 for 5 epochs on a dataset of 805,940 transitions, except
for layers 2 and 3 for the distance and squared distance, which were trained for 10 epochs,
layer 3 for the inverse distance, which was trained for 20 epochs, and layer 4 for the squared
distance, which was trained for 40 epochs (which still did not seem to have converged). Losses
for probes trained identically on randomly initialized networks in parentheses.

Distance Squared distance Inverse distance Inverse squared distance

Mean 17.2 1.12× 104 0.0047 0.0027
Layer 1 14.7 1.1× 104 (1.2× 104) 0.0042 0.0035
Layer 2 11.6 8.4× 103 (1.2× 104) 0.0071 0.0041
Layer 3 16.8 1.1× 104 (1.2× 104) 0.0051 0.043
Layer 4 17.1 (17.1) 5.4× 104 (2.4× 104) 0.0043 (0.0046) 0.0023 (0.0029)

Table 5.4: Test losses of training probes on the 40-epoch CoinRun network. Mean refers to the
loss obtained from always guessing the mean value of the attribute in question. All probes are
trained with batch size 128 for 5 epochs on a dataset of 805,940 transitions, except for squared
distance probes which were trained for 10 epochs. Losses for probes trained identically on
randomly initialized networks in parentheses—for the sake of conserving compute, this was
only evaluated on layer 4 except for experiments with the squared distance, where it seemed
to significantly vary by layer.
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Distance Squared distance

Mean 1.83 102
Layer 1 1.64 (1.85) 94.4 (104)
Layer 2 0.86 (1.85) 60.8 (106)
Layer 3 1.63 (1.84) 66.3 (111)
Layer 4 1.82 (1.90) 236 (112)

Table 5.6: Test losses of training probes on filtered data on the 15-epoch CoinRun network.
Mean refers to the loss obtained from always guessing the mean value of the attribute in
question. All probes are trained with batch size 128. Probes were trained for 20 epochs on
the distance for layers 1 and 2, 40 epochs on the distance for layers 3 and 4, 50 epochs on the
squared distance for layer 1, and 30 epochs on the squared distance for layers 2, 3, and 4.
Losses for probes trained identically on randomly initialized networks in parentheses.

Distance Squared distance

Mean 1.83 102
Layer 1 1.42 (1.83) 82.8 (103)
Layer 2 0.88 (1.82) 53.0 (110)
Layer 3 1.37 (1.88) 73.6 (108)
Layer 4 1.83 (1.86) 240 (115)

Table 5.7: Test losses of training probes on filtered data on the 40-epoch CoinRun network.
Mean refers to the loss obtained from always guessing the mean value of the attribute in
question. All probes are trained with batch size 128. Probes were trained for 20 epochs
on the distance for layers 1 and 2, 50 epochs on the distance for layer 3, 30 epochs on the
distance for layer 4, 50 epochs on the squared distance for layer 1, and 30 epochs on the
squared distance for layers 2, 3, and 4. Losses for probes trained identically on randomly
initialized networks in parentheses.

Results of training filtered probes on the 15-epoch CoinRun network are shown in Table 5.6,
and of training filtered probes on the 40-epoch CoinRun network are shown in Table 5.7. We
see some improvement on the unfiltered probes results, but not much, suggesting that the
primary issue is that networks lack a high-quality linear representation of the distance from
the agent sprite to the coin even on the subset of data where both are plainly visible.
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5.8 Adversarial training
Given the problems with the representations of the CoinRun and Heist reward networks
shown in Sections 5.5, 5.6, and 5.7, we thought it would be valuable to determine whether
or not adversarial training could fix those problems. Broadly, the method used was to
repeatedly ‘visualize’ the network by synthesizing inputs with high predicted reward, and
then train the network on those ‘visualizations’ with label 0, on the assumption that the
‘visualizations’ depicted situations where an agent sprite was not reaching the coin, and were
in fact adversarial examples.

We found it difficult to come up with a training scheme that consistently successfully
trained the network to a low loss. One hypothesis for why this would be is that when training
on MSE loss, adversarial examples contribute disproportionately to the batch gradient due to
the fact that the network is making a disproportionately large error on those examples. As a
result, under this hypothesis, the gradient over a whole batch would mostly point towards
the network to ‘forget what it knows’. This would suggest using something like the Huber
loss instead (Huber, 1964), but preliminary attempts to adversarially train networks on that
loss did not succeed.

One scheme did have a successful run. This run involved training for 10 epochs in total,
using batch size 256, adding adversarial examples in every epoch starting in epoch 5, and
picking the number of adversarial examples added per epoch to be 0.1% of the size of the
training dataset. After adding adversarial examples, batch gradients were clipped to have
norm at most the 99th percentile of norms of gradients in the epoch before adding adversarial
examples. In this run, the “adversarial examples” used were the highest-reward dataset
examples, followed by 16 gradient steps of optimization for predicted reward. This run
achieved a train loss of 0.1025 and a test loss of 0.1091. For the first adversarial examples
added, its loss is 0.0035, and for the final adversarial examples added and trained on, its
loss is 1.55. However, the trained network is still susceptible to adversarial examples. Mean
squared error for examples generated at the end of the training run was 436.4, suggesting
that a typical predicted reward for these examples was ∼21—lower than the predicted reward
of adversarial examples constructed in the same way for the 15-epoch CoinRun network
(∼100), indicating that the training was somewhat efficacious. Furthermore, some of these
final “adversarial examples” feature something like an agent sprite landing on a coin, as shown
in Figure 5.18. Examples of adversarial examples produced throughout the training process
are shown in Figures C.4, C.5, C.6, C.7, and C.8.

The network almost always assigned ∼0 predicted reward to random noise, suggesting that
adversarial training initially hardened the network against generic high-frequency randomness.
This also made de novo visualization harder: using method 1 of Section 5.4 produced images
with predicted reward ∼0, likely because penultimate activations were all in the flat part of
the ReLU, meaning that no gradient could pass to the images in question.

Results of training probes on this network are shown in Table 5.8, and of training filtered
probes on this network are shown in Table 5.9. Regarding the manual adversarial examples
described in Section 5.6, this network assigned a mean reward of 8.9 to the unedited examples
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(a) Observation of first transition. (b) Next observation of first transition.

(c) Observation of second transition. (d) Next observation of second transition.

Figure 5.18: Two visualizations produced at the end of adversarial training. Note the yellow
pixels where the coin used to be, and a blue-ish white-ish smudge that looks like a smeared-out
agent sprite.
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Distance Squared distance Inverse distance Inverse squared distance

Mean 17.2 1.12× 104 0.0047 0.0027
Layer 1 15.4 1.1× 104 (1.2× 104) 0.0035 0.0023
Layer 2 13.6 1.0× 104 (1.2× 104) 0.0031 0.0027
Layer 3 15.2 1.0× 104 (1.2× 104) 0.0066 0.0025
Layer 4 16.3 (17.1) 5.3× 104 (2.4× 104) 0.0038 (0.0045) 0.0021 (0.0026)

Table 5.8: Test losses of training probes on the adversarially trained CoinRun network. Mean
refers to the loss obtained from always guessing the mean value of the attribute in question.
All probes are trained with batch size 128 for 5 epochs on a dataset of 805,940 transitions,
except for squared distance probes which were trained for 10 epochs. Losses for probes
trained identically on randomly initialized networks in parentheses—for the sake of conserving
compute, this was only evaluated on layer 4 except for experiments with the squared distance,
where it seemed to vary by layer.

Norm Squared distance

Mean 1.83 102
Layer 1 1.75 (1.91) 98.5 (99.0)
Layer 2 1.22 (1.87) 85.9 (107)
Layer 3 1.45 (1.81) 85.3 (106)
Layer 4 1.70 (1.86) 233 (109)

Table 5.9: Test losses of training probes on filtered data on the adversarially trained CoinRun
network. Mean refers to the loss obtained from always guessing the mean value of the
attribute in question. All probes are trained with batch size 128. Probes were trained for
20 epochs on the distance for layers 1 and 2, 40 epochs on the distance for layers 3 and 4,
50 epochs on the squared distance for layer 1, and 30 epochs on the squared distance for
layers 2, 3, and 4. Losses for probes trained identically on randomly initialized networks in
parentheses.

with a standard deviation of 2.3, a mean reward of 4.6 to the translated coin and sprite
examples with a standard deviation of 3.4, and a mean reward of 0.03 to examples where the
coin was above the sprite, with a standard deviation of 0.1.

Overall, the adversarially trained network did better than the other networks on avoiding
‘visualizations’ with high predicted reward that appeared meaningless, including assigning
lower reward to random noise, but failed to have better representations as indicated by the
results of training probes and finding the network’s response to manual adversarial examples.
However, this could be due to the fact that the network was not trained to as low a loss as
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those other networks.

5.9 Dots and distances
In the case of CoinRun networks, we found difficulty in probing them for the distance from
the agent sprite to the coin, and concluded that they were not adequately representing
that distance. However, that conclusion may have been too hasty. For any monotonically
increasing or decreasing function, the network could linearly represent that function of the
distance, and calculate the reward by determining whether that function of the distance was
over or under the appropriate threshold. If said function looked strange enough, we might
get poor results when probing for the distance, despite the network’s representations being
perfectly adequate.

We therefore wanted to simplify the environment in order to study a setting where it was
clear what intermediate variables the neural network should be predicting. In this setting,
called ‘dots and distances’, images feature six filled circles of radius 0.05 dropped uniformly
at random on a background white square of width 1: two red, two blue, and then two green.
Each image is labelled with the average distance between the centres of circles of the same
colour. Example images are shown in Figure 5.19. The mean label is approximately4 0.469,
and the standard deviation of labels is approximately 0.129.

Two networks were trained by regression on this data: the first on 9e5 training data
points for 50 epochs, achieving a test MSE loss of 0.0052; and the second on 9e6 training
data points for 5 epochs, achieving a test MSE loss of 0.0055. For reference, the MSE loss
one would incur from always guessing the mean is 0.0166. Another network was trained on a
classification task, more analogous to the CoinRun reward regression problem: data points
were divided into two classes, one where the average distance was less than a cut-off, and one
where it was greater. The cut-off was chosen so that 0.93% of data points were in the first
class, matching the CoinRun data. The classification network was trained on 9e6 training
data points for 5 epochs, and achieved a test cross-entropy loss of 0.013. For reference, the
cross-entropy loss incurred from always guessing base rates is 0.053.

These networks were then probed for the vector of distances between each pair of same-
coloured dots. All probes were trained for 10 epochs with batch size 128, each on a fresh
dataset of size 9e4. Results are shown in Table 5.10, and they show both similarities and
differences to the results of probing CoinRun networks. The main difference is that the
quality of the representation of the distance vector increases layer by layer until the final
layer. By comparison, in CoinRun the best estimate of the distance was in layer 2. Another
distinction is that the mean squared error of probing our networks for the distance vector
is approximately half that of constantly guessing the mean distance vector. This is better

4Precisely, it’s 3/50× (2 +
√
2 + 5 log(1 +

√
2)), see https://math.stackexchange.com/questions/1294800/

average-distance-between-two-randomly-chosen-points-in-unit-square-without-calc and note that in our case
the centres of the circles are confined to a square of width 0.9, so that the whole circle is contained in the
image.

https://math.stackexchange.com/questions/1294800/average-distance-between-two-randomly-chosen-points-in-unit-square-without-calc
https://math.stackexchange.com/questions/1294800/average-distance-between-two-randomly-chosen-points-in-unit-square-without-calc
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Figure 5.19: Example images in the dots and distances dataset. The black frame is for ease
of determining the border of the images, and is not part of the actual images.
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50-epoch net 5-epoch net Classification net Random

Layer 1 0.0465 0.0486 0.0426 0.0500± 0.0005
Layer 2 0.0326 0.0355 0.0343 0.0500± 0.0004
Layer 3 0.0548 0.0311 0.0283 0.0499± 0.0001
Layer 4 0.0236 0.0255 0.0255 0.0497± 0.0002

Table 5.10: Test losses of training probes for the vector of distances on networks trained on
dots and distances. The loss from constantly guessing the mean was 0.0498. All probes are
trained with batch size 128, on a fresh dataset of size 9e4 for 10 epochs. The ‘Random’ column
contains the mean and standard deviation of the test accuracies resulting from training probes
on five different randomly-initialized networks. We see that networks contain a gradually
improving representation of the vector of distances, but this representation is by no means
perfect. Note that for Layer 3 of the 50-epoch network, at the end of the second-to-last epoch
of probe training the test loss was 0.0304.

than the unfiltered results on CoinRun, where we could only achieve two thirds of the mean
squared error of blind guessing (see Tables 5.3 and 5.4), but on par with the filtered results,
where we also achieved around half the mean squared error of blind guessing (see Tables 5.6
and 5.7). At any rate, the representation is not very precise or accurate. This could be
explained by the relatively high test losses of the networks trained on MSE minimization,
which were approximately one third of the loss associated with blindly guessing the mean.

5.10 Discussion
In this chapter, we have used a few conventional interpretability methods to understand the
reward networks in question: visualization by optimization, and training linear probes. A
natural question to ask is whether these tools worked. In one sense, they did. At the end
of this chapter, we know that the CoinRun networks represent something that somewhat
matches distance from the agent sprite to the coin on conventional data, that optimal images
seem to involve consistent in-focus shapes with a pink to cyan colour transition, and we have
some examples of inputs that our networks mispredict reward for. Furthermore, the results of
these methods suggested the hypothesis of testing the networks’ responses to observations of
random pixels, which turned out to be fruitful. However, the tools were less informative than
one might hope. We still do not have a solid understanding of how the networks actually
work. This suggests that the underlying assumption behind these methods, that networks
linearly represent comprehensible features in their activation spaces, is wrong, and a new
way of thinking is needed.

That said, our findings are concerning. The reward networks incorrectly handle out-
of-distribution inputs, lending plausibility to concerns about goal misgeneralization. Of
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particular concern is the high reward given to observations of random pixels, which suggests
that if an agent used these reward models, and the environment changed so that the agent were
able to give itself random noise observations, it may do that to the exclusion of accomplishing
valuable tasks. Cohen et al. (2022) details at some length the problems of having an advanced
AI agent attempting to ‘wirehead’ itself by maximizing its own reward signal: it seems likely
that similar problems could occur with advanced agents attempting to ensure that they could
always perceive noise observations.

Ultimately, this chapter merely prevents case studies. Ideally, more work would be done
to investigate the representations of reward networks learned by methods such as RLHF
(Christiano et al., 2017) and RLAIF (Bai et al., 2022), although in large models with complex
reward functions it may be more difficult to enumerate relevant features and rule out their
representation somewhere in the network in the way we have been able to do in this chapter.
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Chapter 6

Conclusion

6.1 Summary of dissertation
This dissertation started with a discussion of the importance of having a ‘frame’ to understand
the computation inside neural networks, so that we can foresee and prevent goal misgener-
alization. It endorsed the frame of neural networks as implementing multi-step computer
programs, and discussed the importance in that frame of finding modular structure in the
network to understand this computation.

After surveying some literature on the topic of understanding neural networks in Chapter 2,
we focussed on graph clusterability as our structure of choice. In Chapter 3, we measured the
degree of clusterability in trained neural networks, determined how it compared to that of
random neural networks, and determined which training methods promoted clusterability:
namely pruning, dropout, and bespoke regularization. Then, in Chapter 4, we attempted to
quantify the degree to which functionality was ‘locally specialized’ in the clusters found by
spectral clustering: that is, whether clusters were more important to network functionality
and more semantically coherent than other groupings of neurons. We found that they were
more important, and that they were more coherent in the sense that they were easier to jointly
activate. The dissertation closed with Chapter 5, where we embarked on an exploratory
analysis of some neural networks trained on reward functions. We use standard interpretability
tools designed to understand the features represented by linear combinations of neurons, and
determine that seemingly capable reward networks do not use high-quality representations
of relevant features, and can be fooled into giving the wrong reward on out-of-distribution
samples. This motivates a concern with goal misgeneralization, and also a desire to develop
new tools to understand the workings of neural networks. Although this dissertation has by
no means established a new paradigm for neural network interpretability, it has taken a step
in that direction and motivated a search for one.
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6.2 Future work
There is much work to be done extending the research presented in this dissertation.

Firstly, discussion of clusterability focussed its attention to applying the spectral clustering
algorithm to image classification networks. One simple extension would be to try different
algorithms to see which one was best at finding the relevant structure. These should be tested
both against metrics of cluster quality as well as metrics of functional specialization. Another
important extension is to the transformer architecture commonly used in large language
models (Vaswani et al., 2017). Specifically, it is not obvious how one would meaningfully turn
an attention layer into a weighted graph, nor is it obvious how multi-token computation should
be represented without redundantly representing the same linear layers for each token. Given
the broader goal of understanding network computation as execution of a multi-step program,
it is possible that this goal is best served by using existing work providing a programming
language that compiles to transformer networks and applying decompilation techniques to it
(Lindner et al., 2023; Weiss et al., 2021).

Furthermore, it is not at all obvious that the right way to form a graph out of a neural
network is to use one node per neuron. One alternative used by Olah et al. (2018) is to use
non-negative matrix factorization to find the ‘right’ basis of activation space. One could then
make a graph with those basis vectors as nodes. Another alternative is suggested by research
by Bricken et al. (2023) is to train an autoencoder on activation spaces to find latent sparse
factors of variation. These appear to be more interpretable than neurons, and perhaps form
a more suitable atom of network computation.

Another extension, related to that of finding the right clustering algorithm, is to find a
better method of regularizing for clusterability. The approach we use in Subsection 3.5.1 fails
to work for convolutional neural networks, and also requires solving an eigenvalue problem
each time the regularizer gradient was calculated. One possible approach would be to use the
outcome of a power iteration method after a small number of iterations, but it is entirely
possible that entirely different approaches are warranted.

Perhaps the most obvious direction for future research, however, is better understanding
the relevance of clusters. Work presented in this dissertation provides evidence that they
play some functional role, but it is as yet unclear what exactly that role is. One way to do
so is to develop better and more fine-grained automated metrics of functional specialization
than those we present in Chapter 4. Such metrics could ideally shed light on the kind of
functionality contained within different clusters. Another possibility is to use large language
models to interpret clusters, as in work by Bills et al. (2023), although the effectiveness of
this approach has not yet been proven. It is also possible that manual exploration of clusters
might shed light on their functionality, and possibly provide clues as to how to algorithmically
analyze them in future.
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Appendix A

Appendix to ‘Clusterability in Neural
Networks’

In this appendix, we give tables and plots providing more information on data that was
presented in chapter 3.

First, figures A.1, A.2, and A.3 show the distribution of n-cuts of randomly-initialized
MLPs, small CNNs, and VGGs, respectively.

We also show tables of statistics of clusterability experiments shown in the main paper:
tables A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, and A.11. In these, the column “N-cut”
shows the mean n-cut of the networks, “Dist. n-cuts” shows the average mean and standard
deviation of the distribution of n-cuts of shuffled networks, where the average is taken over
different trained networks (which induce different distributions of shuffled networks), and
train and test accuracies are also averaged over runs. In table A.7, since we only have one of
each network, no averaging is done. “Prop. p < 0.02” shows how many networks are more
clusterable than all 50 shuffles.

Reg. Prune? N-cut Dist. n-cuts p < 0.02 Train acc. Test acc.

None × 10.024 10.165± 0.035 5/5 0.997 0.980
Dropout × 9.97 10.30± 0.11 5/5 0.973 0.980
L1 × 9.06 6.50± 0.14 0/5 0.991 0.979
L2 × 9.639 9.387± 0.066 1/5 0.992 0.980
None

√
8.880 9.183± 0.031 5/5 1.000 0.984

Dropout
√

8.350 9.247± 0.039 5/5 0.967 0.979
L1

√
10.063 2.72± 0.33 0/5 0.997 0.981

L2

√
8.335 8.599± 0.081 3/5 0.998 0.982

Table A.1: Clusterability of MLPs trained on MNIST. See start of appendix A for details.
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Figure A.1: N-cuts of 100 randomly-initialized MLPs. Vertical axis shows probability density.
Plot was generated using the distplot function of seaborn 0.9.0 Waskom et al., 2018 with
kde set to True.

Figure A.2: N-cuts of 100 randomly-initialized small CNNs. Vertical axis shows probability
density. Plot was generated using the distplot function of seaborn 0.9.0 Waskom et al.,
2018 with kde set to True.
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Figure A.3: N-cuts of 100 randomly-initialized VGGs. Vertical axis shows probability density.
Plot was generated using the distplot function of seaborn 0.9.0 Waskom et al., 2018 with
kde set to True.

Reg. Prune? N-cut Dist. n-cuts p < 0.02 Train acc. Test acc.

None × 9.884 10.080± 0.037 5/5 0.939 0.891
Dropout × 9.698 10.052± 0.034 5/5 0.862 0.872
L1 × 8.41 7.21± 0.10 0/5 0.907 0.880
L2 × 9.468 9.185± 0.068 0/5 0.913 0.879
None

√
8.687 9.032± 0.035 5/5 0.983 0.894

Dropout
√

8.110 9.131± 0.041 5/5 0.864 0.867
L1

√
9.94 4.59± 0.23 0/5 0.933 0.887

L2

√
8.524 8.746± 0.077 3/5 0.951 0.892

Table A.2: Clusterability of MLPs trained on Fashion-MNIST. See start of appendix A for
details.
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Dataset Same/diff Prune? N-cut Dist. n-cuts p < 0.02 Train acc. Test acc.

MNIST same × 10.041 10.104± 0.027 2/5 0.999 0.993
MNIST diff × 9.874 10.312± 0.091 5/5 0.989 0.926
MNIST same

√
8.923 9.036± 0.035 3/5 1.000 0.995

MNIST diff
√

8.460 9.181± 0.033 5/5 1.000 0.940
Fashion same × 9.782 9.919± 0.032 4/5 0.972 0.940
Fashion diff × 9.881 10.246± 0.021 5/5 0.849 0.716
Fashion same

√
8.447 8.800± 0.038 4/5 0.997 0.947

Fashion diff
√

8.637 9.046± 0.028 5/5 0.899 0.724

Table A.3: Clusterability of MLPs trained on ‘halves’ datasets. See start of appendix A for
details.

Reg. Prune? N-cut Dist. n-cuts p < 0.02 Train acc. Test acc.

None × 10.687 10.673± 0.018 0/5 0.998 0.992
Dropout × 10.688 10.698± 0.016 0/5 0.990 0.994
L1 × 10.31 5.30± 0.18 0/5 0.993 0.991
L2 × 8.050 10.252± 0.032 5/5 0.996 0.991
None

√
10.462 10.034± 0.039 0/5 1.000 0.993

Dropout
√

10.267 10.073± 0.039 0/5 0.974 0.993
L1

√
9.31 3.05± 0.28 0/5 0.995 0.991

L2

√
10.754 9.764± 0.059 0/5 0.999 0.992

Table A.4: Clusterability of small CNNs trained on MNIST. See start of appendix A for
details.

Reg. Prune? N-cut Dist. n-cuts p < 0.02 Train acc. Test acc.

None × 10.643 10.671± 0.018 1/5 0.982 0.922
Dropout × 10.615 10.646± 0.019 2/5 0.922 0.925
L1 × 9.98 7.49± 0.11 0/5 0.939 0.913
L2 × 9.303 10.578± 0.023 5/5 0.972 0.923
None

√
10.377 10.060± 0.041 0/5 0.995 0.922

Dropout
√

9.974 9.951± 0.042 0/5 0.863 0.905
L1

√
10.28 8.62± 0.13 0/5 0.954 0.919

L2

√
10.445 9.976± 0.043 0/5 0.994 0.923

Table A.5: Clusterability of small CNNs trained on Fashion-MNIST. See start of appendix A
for details.
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Reg. Prune? N-cut Dist. n-cuts p < 0.02 Train acc. Test acc.

None × 8.189 3.819± 0.235 0/5 0.958 0.882
Dropout × 8.844 8.283± 0.117 0/5 0.904 0.896
L1 × 5.294 2.074± 0.036 0/5 0.912 0.871
L2 × 8.548 2.104± 0.194 0/5 0.958 0.899
Dropout & L2 × 8.355 8.246± 0.101 1/5 0.900 0.898
Control

√
8.133 3.603± 0.213 0/5 0.974 0.909

Dropout
√

6.341 7.977± 0.206 5/5 0.905 0.905
L1

√
4.701 0.741± 0.052 0/5 0.930 0.881

L2

√
8.701 1.730± 0.223 0/5 0.974 0.908

Dropout & L2

√
6.135 7.994± 0.184 4/5 0.905 0.902

Table A.6: Clusterability of VGGs trained on CIFAR-10. See start of appendix A for details.

Network N-cut Dist. n-cuts p-value Top-1 acc.

VGG-16 7.800 8.213± 0.019 0.01 0.708
VGG-19 7.330 7.655± 0.043 0.01 0.709
ResNet-18 7.90 8.51± 0.28 0.01 0.682
ResNet-34 6.318 6.375± 0.001 0.01 0.722
ResNet-50 4.125 4.185± 0.001 0.01 0.748
Inception-V3 2.906 2.938± 0.007 0.02 0.776

Table A.7: Clusterability statistics of networks trained on ImageNet. Top-1 accuracies are
taken from https://github.com/qubvel/classification_models.

Dataset Same/diff Prune? N-cut Dist. n-cuts p < 0.02 Train acc. Test acc.

MNIST same × 10.702 10.679± 0.017 0/5 0.999 0.998
MNIST diff × 10.548 10.583± 0.021 1/5 0.979 0.914
MNIST same

√
10.347 9.969± 0.040 0/5 1.000 0.999

MNIST diff
√

10.225 10.019± 0.039 0/5 0.978 0.902
Fashion same × 10.701 10.703± 0.017 0/5 0.992 0.958
Fashion diff × 10.524 10.567± 0.020 3/5 0.860 0.703
Fashion same

√
10.328 10.109± 0.039 0/5 1.000 0.966

Fashion diff
√

9.953 9.990± 0.044 0/5 0.818 0.683

Table A.8: Clusterability of small CNNs trained on stack datasets. See start of appendix A
for details.

https://github.com/qubvel/classification_models
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Dataset Prune? N-cut Dist. n-cuts p < 0.02 Train acc. Test acc.

MNIST × 8.718 10.065± 0.031 5/5 0.996 0.979
MNIST

√
5.750 9.200± 0.038 5/5 1.000 0.983

Fashion × 8.746 10.022± 0.038 5/5 0.938 0.892
Fashion

√
6.265 9.065± 0.035 5/5 0.980 0.893

Table A.9: Clusterability of clusterably-initialized MLPs. See start of appendix A for details.

Dataset Prune? N-cut Dist. n-cuts p < 0.02 Train acc. Test acc.

MNIST × 10.528 10.658± 0.018 5/5 0.998 0.991
MNIST

√
10.148 10.001± 0.039 0/5 1.000 0.993

Fashion × 10.574 10.662± 0.018 5/5 0.982 0.921
Fashion

√
10.357 10.034± 0.040 0/5 0.995 0.923

Table A.10: Clusterability of clusterably-initialized small CNNs. See start of appendix A for
details.

Prune? N-cut Dist. n-cuts p < 0.02 Train acc. Test acc.

× 8.213 3.905± 0.219 0/5 0.957 0.898√
8.212 3.582± 0.229 0/5 0.974 0.902

Table A.11: Clusterability of clusterably-initialized VGGs trained on CIFAR-10. See start of
appendix A for details.
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Appendix B

Appendix to ‘Importance and Coherence’

Tables B.1 (lesion experiments data) and B.2 (feature visualization experiment data) show
the mean Fisher statistics from Table 4.1, their p values, and effect measure results from
Table 4.2, but do so in a form that places the mean Fisher statistic, p value, and effect
measure data from each network in the same row. All Fisher statistics significant according
to the Benjamini-Hochberg method are in bold, and all effect measures indicating greater
average importance/coherence among true subclusters compared to random subclusters are
in bold.
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Table B.1: Results for lesion-based experiments in networks involving importance as measured
through overall accuracy drops and coherence as measured by the class-wise range of accuracy
drops. Each row corresponds to a network paired with a partitioning method. Results are
calculated as explained in Section 4.3.2—in particular, Fisher statistics are means over 5 runs.
Each Fisher statistic which is significant at an α = 0.05 level under the Benjamini-Hochberg
multiple correction is in bold. In this case, significance means p ≤ 0.025. Effect measures
are reported together with their standard errors. For both accuracy drop and classwise
range experiments, an effect measure > 1 corresponds to more importance/coherence among
true subclusters than random ones. All such effect measures which are further than two
standard errors above 1 are in bold. Note that C-10 is short for CIFAR-10, and IN is short
for ImageNet.

Importance: Acc. Drop Coherence: Class Range
Network Partitioning Fisher Stat. Effect Meas. Fisher Stat. Effect Meas.

(p Value) High→Imp. (p Value) High→Coh.

MLP, MNIST

Weight/Net. 2.13 (1× 10−17) 1.123± 0.058 0.91 (0.82) 0.701± 0.036
Weight/Layer 2.05 (5× 10−27) 1.061± 0.048 0.91 (0.91) 0.676± 0.029
Act./Net. 1.46 (2× 10−11) 0.883± 0.038 1.00 (0.56) 0.646± 0.024
Act./Layer 1.69 (6× 10−22) 0.929± 0.040 1.03 (0.32) 0.687± 0.025

CNN, MNIST

Weight/Net. 1.29 (2× 10−5) 0.837± 0.048 0.84 (0.98) 0.527± 0.031
Weight/Layer 1.10 (0.063) 0.814± 0.046 0.94 (0.82) 0.635± 0.033
Act./Net. 1.73 (4× 10−10) 1.078± 0.061 0.70 (1.00) 0.543± 0.039
Act./Layer 1.46 (2× 10−7) 0.939± 0.060 0.92 (0.84) 0.625± 0.043

VGG, C-10

Weight/Net. 1.50 (4× 10−8) 0.682± 0.066 2.12 (2× 10−29) 0.407± 0.042
Weight/Layer 1.15 (0.021) 0.808± 0.041 1.27 (2× 10−4) 0.692± 0.033
Act./Net. 1.40 (2× 10−11) 0.926± 0.032 0.97 (0.85) 0.679± 0.023
Act./Layer 1.56 (2× 10−23) 0.956± 0.030 1.03 (0.27) 0.695± 0.021

VGG-16, IN

Weight/Net. 2.54 (3× 10−23) 1.205± 0.050 0.49 (1.00) 0.790± 0.010
Weight/Layer 2.15 (2× 10−57) 1.168± 0.019 0.56 (1.00) 0.825± 0.005
Act./Net. 1.89 (1× 10−19) 1.129± 0.026 0.63 (1.00) 0.859± 0.006
Act./Layer 1.66 (2× 10−24) 1.063± 0.021 0.70 (1.00) 0.876± 0.005

ResNet-18, IN

Weight/Net. 1.42 (3× 10−4) 0.926± 0.045 1.13 (0.13) 0.957± 0.011
Weight/Layer 1.29 (4× 10−9) 0.971± 0.015 0.99 (0.55) 0.971± 0.004
Act./Net. 1.30 (6× 10−7) 0.979± 0.017 0.92 (0.92) 0.977± 0.004
Act./Layer 1.31 (5× 10−10) 0.971± 0.015 0.96 (0.794) 0.967± 0.004
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Table B.2: Results for feature visualization-based experiments in networks involving coherence
as measured by the optimization score of feature visualizations and the entropy of network
outputs. Each row corresponds to a network paired with a partitioning method. Results
are calculated as explained in Section 4.3.2—in particular, Fisher statistics are means over 5
runs. Each Fisher statistic which is significant at an α = 0.05 level after Benjamini-Hochberg
multiple correction is in bold. In this case, significance means p ≤ 0.025. Effect measures
are reported together with their standard errors. For visualization score experiments, an
effect measure > 1 corresponds to more coherence among true subclusters than random ones,
while one of < 1 does for softmax entropy experiments. All effect measures which are more
than two standard errors away from 1 on the side reflecting greater coherence among true
subclusters are in bold. Note that C-10 is short for CIFAR-10, and IN is short for ImageNet.

Coherence: Vis Score Coherence: Softmax H
Network Partitioning Fisher Stat. Effect Meas. Fisher Stat. Effect Meas.

(p Value) High→Coh. (p Value) Low→Coh.

MLP, MNIST

Weight/Net. 1.32 (0.001) 1.003± 0.004 0.92 (0.71) 1.105± 0.021
Weight/Layer 1.21 (0.002) 1.024± 0.004 1.23 (0.023) 0.931± 0.016
Act./Net. 1.34 (4× 10−5) 1.020± 0.003 1.15 (0.025) 0.997± 0.013
Act./Layer 1.36 (9× 10−7) 1.026± 0.003 1.12 (0.013) 1.011± 0.012

CNN, MNIST

Weight/Net. 1.10 (0.082) 0.998± 0.004 0.93 (0.86) 1.026± 0.008
Weight/Layer 1.02 (0.34) 1.004± 0.003 0.99 (0.52) 1.007± 0.007
Act./Net. 1.09 (0.27) 0.933± 0.006 0.90 (0.83) 1.025± 0.011
Act./Layer 1.05 (0.22) 0.925± 0.005 0.98 (0.67) 0.970± 0.010

VGG, C-10

Weight/Net. 1.46 (7× 10−8) 0.871± 0.011 0.99 (0.61) 1.124± 0.012
Weight/Layer 1.00 (0.44) 1.013± 0.006 0.97 (0.62) 0.992± 0.012
Act./Net. 2.34 (6× 10−64) 1.327± 0.005 1.08 (0.045) 0.950± 0.009
Act./Layer 2.67 (8× 10−121) 1.379± 0.004 1.12 (0.013) 0.930± 0.008

VGG-16, IN

Weight/Net. 1.72 (6× 10−8) 1.043± 0.005 1.19 (0.052) 0.998± 0.001
Weight/Layer 1.90 (3× 10−39) 1.076± 0.003 1.06 (0.16) 0.991± 0.001
Act./Net. 1.83 (3× 10−15) 1.066± 0.003 1.07 (0.21) 1.000± 0.001
Act./Layer 1.85 (1× 10−34) 1.056± 0.003 0.98 (0.63) 1.001± 0.001

VGG-19, IN

Weight/Net. 1.91 (2× 10−10) 1.061± 0.004 1.03 (0.40) 1.003± 0.001
Weight/Layer 2.23 (4× 10−81) 1.099± 0.003 1.00 (0.46) 1.001± 0.001
Act./Net. 1.87 (6× 10−22) 1.046± 0.003 1.10 (0.089) 0.996± 0.001
Act./Layer 2.01 (3× 10−27) 1.081± 0.002 0.98 (0.65) 1.004± 0.001
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Appendix C

Appendix to ‘Feature Representation in
Reward Models’

C.1 Visualizations
Figures C.1, C.2, and C.3 show de novo visualizations of the 15-epoch CoinRun network.

Figures C.4, C.5, C.6, C.7, and C.8 show sample visualizations produced during adversarial
training, as described in Section 5.8.

C.2 Manual adversarial examples
Figures C.9 and C.10 show the original transitions used to make manual adversarial examples,
as described in Section 5.6. Figures C.11, C.12, and C.13 show transitions of manual
adversarial examples where the coin and agent sprite have been translated to the left, and
Figures C.14, C.15, C.16 show transitions of manual adversarial examples where the coin has
been placed above the agent sprite.

C.2.1 Unused manual adversarial example attempts

Initially, a larger set of manual adversarial example attempts were tested on a smaller network
that only took in an observation and an action, allowing more concepts to be tried with less
editing. Most were unsuccessful at fooling the network. In Figures C.17, C.18, C.19, C.20,
C.21, C.22, C.23, C.24, C.25, C.26, C.27, and C.28, we show the attempts that were not used
in the main paper.
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(a) Observation of
visualization of ac-
tion 0 reward.

(b) Next observation
of visualization of
action 0 reward.

(c) Observation of
visualization of ac-
tion 1 reward.

(d) Next observation
of visualization of
action 1 reward.

(e) Observation of
visualization of ac-
tion 2 reward.

(f) Next observation
of visualization of
action 2 reward.

(g) Observation of
visualization of ac-
tion 3 reward.

(h) Next observation
of visualization of
action 3 reward.

(i) Observation of vi-
sualization of action
4 reward.

(j) Next observation
of visualization of
action 4 reward.

(k) Observation of
visualization of ac-
tion 5 reward.

(l) Next observation
of visualization of
action 5 reward.

Figure C.1: De novo visualizations of reward predictions of the first 6 actions of the 15-epoch
CoinRun reward network. For details, see Section 5.4.



APPENDIX C. APPENDIX TO ‘FEATURE REPRESENTATION IN REWARD
MODELS’ 106

(a) Observation of
visualization of ac-
tion 6 reward.

(b) Next observation
of visualization of
action 6 reward.

(c) Observation of
visualization of ac-
tion 7 reward.

(d) Next observation
of visualization of
action 7 reward.

(e) Observation of
visualization of ac-
tion 8 reward.

(f) Next observation
of visualization of
action 8 reward.

(g) Observation of
visualization of ac-
tion 9 reward.

(h) Next observation
of visualization of
action 9 reward.

(i) Observation of vi-
sualization of action
10 reward.

(j) Next observation
of visualization of
action 10 reward.

(k) Observation of
visualization of ac-
tion 11 reward.

(l) Next observation
of visualization of
action 11 reward.

Figure C.2: De novo visualizations of reward predictions of actions 6 through 11 of the
15-epoch CoinRun reward network. For details, see Section 5.4.
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(a) Observation of
visualization of ac-
tion 12 reward.

(b) Next observation
of visualization of
action 12 reward.

(c) Observation of
visualization of ac-
tion 13 reward.

(d) Next observation
of visualization of
action 13 reward.

(e) Observation of
visualization of ac-
tion 14 reward.

(f) Next observation
of visualization of
action 14 reward.

Figure C.3: De novo visualizations of reward predictions of actions 6 through 11 of the
15-epoch CoinRun reward network. For details, see Section 5.4.
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(a) Observation of first transition (b) Next observation of first transition

(c) Observation of second transition (d) Next observation of second transition

Figure C.4: Two visualizations produced after epoch 5 of adversarial training.
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(a) Observation of first transition (b) Next observation of first transition

(c) Observation of second transition (d) Next observation of second transition

Figure C.5: Two visualizations produced after epoch 6 of adversarial training.
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(a) Observation of first transition (b) Next observation of first transition

(c) Observation of second transition (d) Next observation of second transition

Figure C.6: Two visualizations produced after epoch 7 of adversarial training.
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(a) Observation of first transition (b) Next observation of first transition

(c) Observation of second transition (d) Next observation of second transition

Figure C.7: Two visualizations produced after epoch 8 of adversarial training.
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(a) Observation of first transition (b) Next observation of first transition

(c) Observation of second transition (d) Next observation of second transition

Figure C.8: Two visualizations produced after epoch 9 of adversarial training.
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(a) Obs of original
transition 0.

(b) Next obs of orig-
inal transition 0.

(c) Obs of original
transition 1.

(d) Next obs of orig-
inal transition 1.

(e) Obs of original
transition 2.

(f) Next obs of orig-
inal transition 2.

(g) Obs of original
transition 3.

(h) Next obs of orig-
inal transition 3.

(i) Obs of original
transition 4.

(j) Next obs of origi-
nal transition 4.

(k) Obs of original
transition 5.

(l) Next obs of origi-
nal transition 5.

(m) Obs of original
transition 6.

(n) Next obs of orig-
inal transition 6.

(o) Obs of original
transition 7.

(p) Next obs of orig-
inal transition 7.

Figure C.9: Original transitions used to make manual adversarial examples 0 through 7. For
more details, see Section 5.6.
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(a) Obs of original
transition 8.

(b) Next obs of orig-
inal transition 8.

(c) Obs of original
transition 9.

(d) Next obs of orig-
inal transition 9.

(e) Obs of original
transition 10.

(f) Next obs of orig-
inal transition 10.

(g) Obs of original
transition 11.

(h) Next obs of orig-
inal transition 11.

(i) Obs of original
transition 12.

(j) Next obs of origi-
nal transition 12.

(k) Obs of original
transition 13.

(l) Next obs of origi-
nal transition 13.

(m) Obs of original
transition 14.

(n) Next obs of orig-
inal transition 14.

(o) Obs of original
transition 15.

(p) Next obs of orig-
inal transition 15.

Figure C.10: Original transitions used to make manual adversarial examples 8 through 15.
For more details, see Section 5.6.



APPENDIX C. APPENDIX TO ‘FEATURE REPRESENTATION IN REWARD
MODELS’ 115

(a) Observation of tran-
sition 0.

(b) Next observation of
transition 0.

(c) Observation of tran-
sition 1.

(d) Next observation of
transition 1.

(e) Observation of tran-
sition 2.

(f) Next observation of
transition 2.

(g) Observation of tran-
sition 3.

(h) Next observation of
transition 3.

(i) Observation of tran-
sition 4.

(j) Next observation of
transition 4.

(k) Observation of tran-
sition 5.

(l) Next observation of
transition 5.

Figure C.11: Manual adversarial examples 0 through 5 where the agent sprite and coin have
been manually translated to the left. For more details, see Section 5.6.
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(a) Observation of tran-
sition 6.

(b) Next observation of
transition 6.

(c) Observation of tran-
sition 7.

(d) Next observation of
transition 7.

(e) Observation of tran-
sition 8.

(f) Next observation of
transition 8.

(g) Observation of tran-
sition 9.

(h) Next observation of
transition 9.

(i) Observation of tran-
sition 10.

(j) Next observation of
transition 10.

(k) Observation of tran-
sition 11.

(l) Next observation of
transition 11.

Figure C.12: Manual adversarial examples 6 through 11 where the agent sprite and coin have
been manually translated to the left. For more details, see Section 5.6.
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(a) Observation of tran-
sition 12.

(b) Next observation of
transition 12.

(c) Observation of tran-
sition 13.

(d) Next observation of
transition 13.

(e) Observation of tran-
sition 14.

(f) Next observation of
transition 14.

(g) Observation of tran-
sition 15.

(h) Next observation of
transition 15.

Figure C.13: Manual adversarial examples 12 through 15 where the agent sprite and coin
have been manually translated to the left. For more details, see Section 5.6.
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(a) Observation of tran-
sition 0.

(b) Next observation of
transition 0.

(c) Observation of tran-
sition 1.

(d) Next observation of
transition 1.

(e) Observation of tran-
sition 2.

(f) Next observation of
transition 2.

(g) Observation of tran-
sition 3.

(h) Next observation of
transition 3.

(i) Observation of tran-
sition 4.

(j) Next observation of
transition 4.

(k) Observation of tran-
sition 5.

(l) Next observation of
transition 5.

Figure C.14: Manual adversarial examples 0 through 5 where the coin has been placed above
the agent sprite. For more details, see Section 5.6.
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(a) Observation of tran-
sition 6.

(b) Next observation of
transition 6.

(c) Observation of tran-
sition 7.

(d) Next observation of
transition 7.

(e) Observation of tran-
sition 8.

(f) Next observation of
transition 8.

(g) Observation of tran-
sition 9.

(h) Next observation of
transition 9.

(i) Observation of tran-
sition 10.

(j) Next observation of
transition 10.

(k) Observation of tran-
sition 11.

(l) Next observation of
transition 11.

Figure C.15: Manual adversarial examples 6 through 11 where the coin has been placed above
the sprite. For more details, see Section 5.6.
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(a) Observation of tran-
sition 12.

(b) Next observation of
transition 12.

(c) Observation of tran-
sition 13.

(d) Next observation of
transition 13.

(e) Observation of tran-
sition 14.

(f) Next observation of
transition 14.

(g) Observation of tran-
sition 15.

(h) Next observation of
transition 15.

Figure C.16: Manual adversarial examples 6 through 11 where the coin has been placed above
the sprite. For more details, see Section 5.6.
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(a) Observation of tran-
sition 0.

(b) Observation of tran-
sition 1.

(c) Observation of tran-
sition 2.

(d) Observation of tran-
sition 3.

(e) Observation of tran-
sition 4.

(f) Observation of tran-
sition 5.

(g) Observation of tran-
sition 6.

(h) Observation of tran-
sition 7.

(i) Observation of tran-
sition 8.

(j) Observation of tran-
sition 9.

(k) Observation of tran-
sition 10.

(l) Observation of tran-
sition 11.

(m) Observation of
transition 12.

(n) Observation of tran-
sition 13.

(o) Observation of tran-
sition 14.

(p) Observation of tran-
sition 15.

Figure C.17: Manually edited images where the coin is landing on the agent sprite.
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(a) Observation of tran-
sition 0.

(b) Observation of tran-
sition 1.

(c) Observation of tran-
sition 2.

(d) Observation of tran-
sition 3.

(e) Observation of tran-
sition 4.

(f) Observation of tran-
sition 5.

(g) Observation of tran-
sition 6.

(h) Observation of tran-
sition 7.

(i) Observation of tran-
sition 8.

(j) Observation of tran-
sition 9.

(k) Observation of tran-
sition 10.

(l) Observation of tran-
sition 11.

Figure C.18: Manually edited images 0 through 11 where the coin has been replaced by an
enemy, such that if the agent sprite touches the enemy the game will be lost.
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(a) Observation of tran-
sition 12.

(b) Observation of tran-
sition 13.

(c) Observation of tran-
sition 14.

(d) Observation of tran-
sition 15.

Figure C.19: Manually edited images 12 through 15 where the coin has been replaced by an
enemy, such that if the agent sprite touches the enemy the game will be lost.
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(a) Observation of tran-
sition 0.

(b) Observation of tran-
sition 1.

(c) Observation of tran-
sition 2.

(d) Observation of tran-
sition 3.

(e) Observation of tran-
sition 4.

(f) Observation of tran-
sition 5.

(g) Observation of tran-
sition 6.

(h) Observation of tran-
sition 7.

(i) Observation of tran-
sition 8.

(j) Observation of tran-
sition 9.

(k) Observation of tran-
sition 10.

(l) Observation of tran-
sition 11.

(m) Observation of
transition 12.

(n) Observation of tran-
sition 13.

(o) Observation of tran-
sition 14.

(p) Observation of tran-
sition 15.

Figure C.20: Manually edited images where many coins have been placed on screen.
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(a) Observation of tran-
sition 0.

(b) Observation of tran-
sition 1.

(c) Observation of tran-
sition 2.

(d) Observation of tran-
sition 3.

(e) Observation of tran-
sition 4.

(f) Observation of tran-
sition 5.

(g) Observation of tran-
sition 6.

(h) Observation of tran-
sition 7.

(i) Observation of tran-
sition 8.

(j) Observation of tran-
sition 9.

(k) Observation of tran-
sition 10.

(l) Observation of tran-
sition 11.

Figure C.21: Manually edited images 0 through 11 where the platform continues to the right
of the coin, rather than ending with a wall.
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(a) Observation of tran-
sition 12.

(b) Observation of tran-
sition 13.

(c) Observation of tran-
sition 14.

(d) Observation of tran-
sition 15.

Figure C.22: Manually edited images 12 through 15 where the platform continues to the right
of the coin, rather than ending with a wall.
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(a) Observation of tran-
sition 0.

(b) Observation of tran-
sition 1.

(c) Observation of tran-
sition 2.

(d) Observation of tran-
sition 3.

(e) Observation of tran-
sition 4.

(f) Observation of tran-
sition 5.

(g) Observation of tran-
sition 6.

(h) Observation of tran-
sition 7.

(i) Observation of tran-
sition 8.

(j) Observation of tran-
sition 9.

(k) Observation of tran-
sition 10.

(l) Observation of tran-
sition 11.

(m) Observation of
transition 12.

(n) Observation of tran-
sition 13.

(o) Observation of tran-
sition 14.

(p) Observation of tran-
sition 15.

Figure C.23: Manually edited images where the coin has been removed.
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(a) Observation of tran-
sition 0.

(b) Observation of tran-
sition 1.

(c) Observation of tran-
sition 2.

(d) Observation of tran-
sition 3.

(e) Observation of tran-
sition 4.

(f) Observation of tran-
sition 5.

(g) Observation of tran-
sition 6.

(h) Observation of tran-
sition 7.

(i) Observation of tran-
sition 8.

(j) Observation of tran-
sition 9.

(k) Observation of tran-
sition 10.

(l) Observation of tran-
sition 11.

(m) Observation of
transition 12.

(n) Observation of tran-
sition 13.

(o) Observation of tran-
sition 14.

(p) Observation of tran-
sition 15.

Figure C.24: Manually edited images where the agent sprite has been removed.
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(a) Observation of tran-
sition 0.

(b) Observation of tran-
sition 1.

(c) Observation of tran-
sition 2.

(d) Observation of tran-
sition 3.

(e) Observation of tran-
sition 4.

(f) Observation of tran-
sition 5.

(g) Observation of tran-
sition 6.

(h) Observation of tran-
sition 7.

(i) Observation of tran-
sition 8.

(j) Observation of tran-
sition 9.

(k) Observation of tran-
sition 10.

(l) Observation of tran-
sition 11.

Figure C.25: Manually edited images 0 through 11 where large parts of the background have
been painted in the same colours as the coin.
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(a) Observation of tran-
sition 12.

(b) Observation of tran-
sition 13.

(c) Observation of tran-
sition 14.

(d) Observation of tran-
sition 15.

Figure C.26: Manually edited images 12 through 15 where large parts of the background
have been painted in the same colours as the coin.
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(a) Observation of tran-
sition 0.

(b) Observation of tran-
sition 1.

(c) Observation of tran-
sition 2.

(d) Observation of tran-
sition 3.

(e) Observation of tran-
sition 4.

(f) Observation of tran-
sition 5.

(g) Observation of tran-
sition 6.

(h) Observation of tran-
sition 7.

(i) Observation of tran-
sition 8.

(j) Observation of tran-
sition 9.

(k) Observation of tran-
sition 10.

(l) Observation of tran-
sition 11.

Figure C.27: Manually edited images 0 through 11 where large parts of the background have
been painted in the same colours as the coin, and the coin has been removed.
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(a) Observation of tran-
sition 12.

(b) Observation of tran-
sition 13.

(c) Observation of tran-
sition 14.

(d) Observation of tran-
sition 15.

Figure C.28: Manually edited images 12 through 15 where large parts of the background
have been painted in the same colours as the coin, and the coin has been removed.
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