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Abstract

The speed prior SFast is a probability distribution over infinite binary sequences, favour-
ing those sequences that are efficiently computable with short programs. This prior was
introduced and shown to be computable in Schmidhuber [2002]. However, questions
remain as to whether it succeeds at prediction or is efficiently computable. In this thesis,
we show that SFast is efficiently computable when predicting an efficiently computable
sequence, and bound its worst-case time complexity. We also introduce a new prior SKt
and show that it makes few errors when predicting efficiently computable sequences,
but that it is not efficiently computable itself. Finally, we investigate a generalisation of
SKt in the reinforcement learning setting, and show that in certain cases it does very
well.
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Chapter 1

Introduction

In their famous textbook on the topic, Russell and Norvig [2009] define artificial intelli-
gence (AI) as the field that “attempts not just to understand but also to build intelligent
entities”. However, this definition does not tell us what constitutes intelligence. Russell
and Norvig give us four possible definitions:

• Thinking and reasoning like a human.

• Thinking and reasoning optimally, given what one knows.

• Behaving like a human.

• Behaving optimally, given what one knows.

We, like Russell and Norvig, concentrate on the fourth of these. A modification of this
definition has been put forward as the common factor in an attempted comprehensive
list of definitions of intelligence:

Definition 1.1 (Legg-Hutter intelligence (informal)). Intelligence measures an agent’s
ability to achieve goals in a wide range of environments [Legg and Hutter 2007].

As a formal framework to study intelligence, we consider two possible tasks:
sequence prediction and reinforcement learning. In the sequence prediction task, our
agent must predict a sequence that is stochastically generated independently of the
agent’s predictions. This essentially measures the agent’s knowledge of its environment.
However, our true interest is in reinforcement learning (RL), where an agent interacts
with the environment and receives rewards depending on what has happened in those
interactions. We encode the goals that we wish the agent to achieve in the rewards
that we give it, and ask that the agent receive as high a reward sum as possible [Sutton
and Barto 1998]. Although our main interest is in RL, seeing as it more obviously
tests intelligence as defined in Definition 1.1, we study sequence prediction since it is
simpler, and since we feel that learning one’s environment is a good sign that one can
act well in it.

Our general approach is a Bayesian one. The agent has some sort of probability
distribution P over history sequences that it might encounter, and after history h, the
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2 Introduction

probability that the continued history will be h′ is given by Bayes’ rule:

P(h′|h) = P(h′)
P(h)

(1.1)

One justification of this was given by Cox [1946], who showed that if our beliefs in
propositions conditional on other propositions can be summarised in a function from
propositions to real numbers, and if this function satisfies certain plausible conditions,
then it is isomorphic to a probability function1.

Another justification is based on Dutch Book arguments, which suppose that one
values a bet that pays $1 if proposition S is true and nothing otherwise at $P(S), where
P(S) is one’s degree of belief in S. These arguments show that if one’s degrees of
belief violate the axioms of probability, then one would be willing to accept each of
a collection of bets which, when taken together, guarantee the agent a sure loss (see
Ramsey [1960, Chapter VII, Truth and Probability] and Teller [1973]). This is clearly
problematic2, and gives us extra motivation to be Bayesian.

As is made plain by (1.1), the beliefs of the agent of what may happen next are
entirely determined by its prior probabilities P(h). We are therefore driven to wonder
how to set this prior. Occam’s razor gives us a guide: we should give high probability
to simple histories. However, we then need some definition of simplicity, or conversely,
complexity.

Kolmogorov complexity formalises our intuitive understanding of complexity. Rel-
ative to some programming language (or universal Turing machine), the Kolmogorov
complexity of string x is the length of the shortest program that prints x [Kolmogorov
1965; Li and Vitányi 2008]. Simple strings have Kolmogorov complexity that is shorter
than their length: for instance, any programmer worth their salt should be able to
write a short program that prints a string containing one million zeros. Structured
objects also have low Kolmogorov complexity: for instance, one short program can
print out arbitrarily many digits of π , which means that the digits of π have very low
Kolmogorov complexity. Conversely, for a long random string with no interesting
structure, the shortest program which prints the string likely needs to have the string
hard-coded in, and therefore the Kolmogorov complexity is slightly greater than the
length of the string.

In 1964, Ray Solomonoff came up with the idea of using a prior based on Kol-
mogorov complexity for sequence prediction [Solomonoff 1964a; Solomonoff 1964b].
The prior is defined thusly:

P(h) = ∑
programs p that compute h

2−length(p)

1It is worth pointing out that Cox’s original proof was not entirely rigorous, but this has later been
fixed by additionally assuming a technical axiom that does not change the flavour of the result [Van Horn
2003; Paris 2006, Chapter 3].

2The precise reason why it is problematic is something of a philosophical question. One could either
think that a Dutch-Bookable agent would in fact accept a Dutch Book, which would lose them money, or
that Dutch-Bookable beliefs motivate one to act in a knowably sub-optimal way, or that a Dutch-Bookable
agent evaluates identical bets differently depending on how they are described [Talbott 2015].



3

or, to use a more compact notation that we adopt for the rest of this thesis,

P(h) = ∑
p→h

2−|p| (1.2)

Since 2−x decays quickly with x, this sum is essentially dominated by the shortest
program, so P(h) ≈ 2−K(h), or in other words, P is the probability distribution with
respect to which the optimal codelength for history h is the Kolmogorov complexity of
h [MacKay 2003, Section 5.3]. Another way of thinking about this result is that it gives
the probability of obtaining h if we write a program by writing down i.i.d. coinflips
(assuming that our programming language is in binary) 3.

It turns out that a predictor using the Solomonoff prior does very well. If the
sequence is being produced by a deterministic program, then such a predictor only
makes a finite number of errors, bounded by the length of the program (multiplied
by a constant factor). If instead the sequence is stochastically generated according to
a computable probability distribution, ESol(t) is the expected number of errors the
Solomonoff inductor would make up to time t, and Eoptimal(t) is the expected number of
errors that the optimal predictor would make up to time t, then ESol(t)− Eoptimal(t) =

O(
√

Eoptimal(t))—in other words, Solomonoff induction does not make many more

errors than the optimal predictor. Furthermore, for any predictor, if E(t) is the number
of errors made by that predictor up to time t, then ESol(t)− E(t) = O(

√
ESol(t))—in

other words, no other prediction scheme beats Solomonoff induction by much [Hutter
2005, Section 3.4].

One can also consider a reinforcement agent that uses the Solomonoff prior. This
agent, typically called AIXI4, is defined and investigated in Hutter [2005]. Although the
sequence prediction results suggest that AIXI should perform well in any computable
environment, it was recently discovered that all of the known optimality properties
of AIXI are actually trivial or relative to the UTM used [Leike and Hutter 2015a].
Furthermore, we might wish that the agent’s value-to-go (that is, the weighted sum
of its expected future rewards) converges to the optimal agent’s value-to-go given
our agent’s history in every environment. This is the idea behind the condition of
weak asymptotic optimality. Unfortunately, it has been proven that AIXI fails to be
weakly asymptotically optimal, even though weakly asymptotically optimal agents
exist [Orseau 2013; Lattimore and Hutter 2011]. Therefore, although AIXI’s optimality
properties are trivial, its suboptimality properties are non-trivial. It does, however,
have one desirable property: it is self-optimising in environment classes where any
agent is self-optimising, if it is told that it is in that environment class. That is to say, if
it is told that it is in one of a certain class of environments, and there is some agent such
that that agent’s value-to-go converges to the optimal value-to-go in each environment

3One small problem with Equation (1.2) is that it is not actually a probability distribution—the sum of
the probabilities of continuations of h is actually less than the probability of h. Instead, we are dealing with
a more general object called a semimeasure, from which we derive almost all of the utility of probabilities.

4The Solomonoff prior is often written as ξ . Therefore, an agent using the Solomonoff prior is an AI
that uses ξ , or AIξ , or AIXI.
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in the class, then AIXI’s value-to-go also converges to the optimal value-to-go in each
environment in the class, if it initially conditions on being in that class. In other words,
the only way that AIXI can fail to have its value-to-go converge to optimum is for this
to be impossible. Furthermore, this is a non-trivial optimality condition: environment
classes where AIXI would be self-optimising exist, and include the interesting cases of
ergodic Markov decision processes (that is, those where the agent knows what state
of the environment it is in, and the probabilities for the next environmental state and
reward depend only on the previous state and the agent’s previous action) [Hutter
2005, Theorem 5.34].

Unfortunately, the Solomonoff prior is incomputable [Hutter 2005, Theorem 2.23].
This is essentially because to compute P(h), we must know which programs print h,
which requires a solution to the halting problem. We therefore cannot use Solomonoff
induction to predict the weather or election winners.

In Schmidhuber [2002], a variant of the Solomonoff prior is introduced, called the
speed prior. Instead of being based on Kolmogorov complexity, it is inspired by the Kt
complexity measure, defined by

Kt(x) := min{|p|+ log(t) | p is a program which prints x,

and t the time it takes for p to print x}

Therefore, we penalise programs not just for being long, but for their time inefficiency.
This has the desirable property of being computable: intuitively, the reason that we
could not compute the Solomonoff prior was because there were short programs which
take a long time to print the object whose prior we are computing, and therefore we
cannot tell whether to include them in our sum (1.2) by simply waiting for some known
length of time. However, these programs are essentially irrelevant to the speed prior,
precisely because they take so long to compute.

Schmidhuber [2002] claims that this prior makes optimal predictions if our universe
is a simulation run on some universal Turing machine, and derives some intriguing
conclusions for physics from this assumption. However, we were unable to find
in the literature any theorems about the performance of the speed prior in general
environments, or about its computational complexity. In this thesis, we remedy this
gap.

1.1 Thesis outline

In Chapter 2, we give a technical background to the fields of algorithmic information
theory, Solomonoff induction, and reinforcement learning, providing context for the
work of our thesis, before giving the definition of the speed prior in Schmidhuber
[2002], which we call SFast (for reasons which become clear in that chapter).

These preliminaries being out of the way, we introduce our own speed prior SKt
in Chapter 3, show that it also has the properties that make SFast a speed prior, and
rewrite both priors in ways that demonstrate their similarities and differences.

After defining the speed priors, in Chapter 4 we prove error bounds for SKt-based
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sequence prediction. Although we prove results for general stochastic sequences, the
‘headline’ result is that when predicting polynomial-time computable sequences, the
SKt-based predictor only makes logarithmically many errors.

We next tackle the issue of computational complexity in Chapter 5, where we
show that no approximation to SKt(x) is computable in polynomial time, although
approximations are computable in doubly-exponential time—that is, 22O(|x|)

. SFast,
however, does exponentially better, being computable in exponential time. We also
show that these upper bounds reduce by an exponential factor when we are predicting
a polynomial-time computable infinite string: that is, for prefixes of this string, SKt is
computable in exponential time, and SFast is computable in polynomial time.

Moving away from the realm of sequence prediction, in Chapter 6 we investigate
a Bayesian reinforcement learner with a prior based on SKt, and show that in certain
environment classes it is self-optimising.

Finally, in Chapter 7, we conclude, summarising the thesis and indicating possible
avenues of future research. Appendix A gives a list of the meanings of notation used
throughout the thesis.
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Chapter 2

Technical Background

2.1 Turing machines

Turing machines provide an idealised version of a computer. The basic idea is that the
computer has some number of input tapes, some number of working tapes, and one
output tape. The one-dimensional tapes are infinitely long, and are divided up into
squares. Above each tape is a read/write head, which can read what is on the square
it is over (unless it is over the output tape), write a possibly different symbol on the
square (unless it is over one of the input tapes), and move from square to square. The
machine also has an internal state, and a transition function, which takes the current
state and symbols under the current heads, and returns an instruction to (possibly)
write a symbol on the output tape, move the each head left or right, and change state.
There is also a halting state, from which the transition function always does nothing
and returns to the halting state, representing the ending of a computation. For a formal
definition, see [Hopcroft et al. 2001, Section 8.2].

There are three types of Turing machine that we are concerned with. The first is
a monotone machine: this has one input tape, and along both the input tape and the
output tape, the head may only move in one direction (without loss of generality, we
specify that it moves left to right). We say that a monotone machine T computes string

x on input string p, and write p T−→ x, if T prints all of x when the input begins with p,
and if when the last symbol of x is output, the input head has read all of p but no more.
In particular, we do not require that the machine halt after printing x. This is the type
of machine that we are typically concerned with.

The second type of machine, which as far as we know is unique to this thesis,
we call a mixed-input machine. This machine has two input tapes, and similarly to
monotone machines, along the input and output tapes, the head may only move right
to left. We say that a mixed-input machine T computes string x on input tuple of strings

(p, q), and write (p, q) T−→ x, if T prints all of x when the input on the first tape begins
with p and the input on the second tape begins with q, and if when the last symbol of x
is output, the input head on the first tape has read all of p but no more, and the input
tape on the second head has read some prefix of q. Intuitively, the first input tape acts
as it would in a prefix machine, and the second tape provides side information, which
the machine does not have to use all of. We only use this type of machine in the context
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8 Technical Background

of providing a formal definition of reinforcement learning environments.
The third type of machine is a prefix machine, which operates much like a monotone

machine, except that we say that a prefix machine T computes string x on input p if T
prints all of x and then halts having read all of p but no more. This type of machine,
although typically used in the literature, will not be used much in this thesis.

Because we can encode all the details of a monotone or mixed-input Turing ma-
chine1 in a finite binary string, there are only countably many, and we can therefore
effectively enumerate them, writing each Turing machine as Ti for some i ∈ N. This
means that there is a universal Turing machine (UTM).

Theorem 2.1. There is a prefix-free coding 〈i〉 of the natural numbers and a universal

monotone Turing machine Umon such that p
Ti−→ x if and only if 〈i〉p Umon−−→ x, and Umon

halts after printing x on input 〈i〉p if and only if Ti halts after printing x on input p.
Umon prints nothing given input that does not start with 〈i〉 for some i. The time it
takes Umon to output x on input 〈i〉p is only polynomially larger than the time it takes
Ti to print x on input p.

Also, there is a universal mixed-input machine Umix such that (p, q)
Ti−→ x if and

only if (〈i〉p, q) Umix−−→ x, and Umix halts after printing x on input (〈i〉p, q) if and only if
Ti halts after printing x on input (p, q). Umix prints nothing given input whose first
tape does not start with 〈i〉 for some i. The time it takes Umon to output x on input
(〈i〉p, q) is only polynomially larger than the time it takes Ti to print x on input (p, q).

For proof, see Hopcroft, Motwani, and Ullman [2001, Section 9.2]. Throughout this
thesis, we refer to the universal machine of each type as U, and trust the reader to infer

which it is from context. We also typically write p→ x for p U−→ x, since we are usually
interested in the behaviour of the universal machine.

We write the set of binary characters as B, and for any alphabet X , we write the set
of strings of length n in that alphabet as X n, the set of finite strings in that alphabet as
X ∗, and the set of infinite strings in that alphabet as X∞. A finite string of arbitrary
length is written as x, the nth symbol of x is written as xn, the concatenation of finite
string x with the possibly infinite string y is written xy, x j:k denotes x jx j+1 · · · xk, x<k
denotes x1:k−1, and an infinite string is written x1:∞. If k > t, xk:t := ε, the empty string.
All of our monotone Turing machines only read and write binary characters. Our
mixed-input Turing machines read inputs (p, q) ∈ B∗ ×A∗, where A is some arbitrary
finite alphabet, and output symbols in E , another arbitrary finite alphabet.

Also, throughout this thesis, if we have functions f , g : N→ R, we write f
×≤ g if

f (n) = O(g(n)), and f ×= g if f
×≤ g and g

×≤ f . For functions f , g : B∗ → R, we write
f
×≤ g if there exists some constant c > 0 such that for all x ∈ B∗, f (x) < cg(x), and

f ×= g if f
×≤ g and g

×≤ f .

1That is, its number of tapes, number of states, number of symbols, transition function, and initial
state.
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2.2 Algorithmic information theory

Algorithmic information theory formalises the concept of ‘simplicity’ and ‘complexity’
of strings. The intuition is that simple strings should have a short description, or more
specifically, have a short program that prints them. This is formalised in the definition
of prefix Kolmogorov complexity, relative to Turing machine T:

Definition 2.2 (Prefix Kolmogorov complexity).

KT(x) := min
p
{|p| : p T−→ x, and T halts immediately after printing x}

That is, it is the shortest program that prints x on prefix machine T.

We can also consider prefix Kolmogorov complexity relative to the universal ma-

chine U. Since p
Ti−→ x with Ti then immediately halting if and only if 〈i〉p→ x with U

then immediately halting, KU(x) ≤ KTi(x) + |〈i〉|. Therefore, complexities are almost
lowest when measured on the universal Turing machine, but for an irrelevant additive
constant. Furthermore, if there are two universal Turing machines U1 and U2, using
two different codings of the natural numbers, then |KU1(x)−KU2(x)| ≤ c [Kolmogorov
1965].

Two variants of Kolmogorov complexity are be relevant in this thesis. The first
variant is monotone Kolmogorov complexity, which refers to computation on monotone
Turing machines [Levin 1973]:

Definition 2.3 (Monotone Kolmogorov complexity).

KmT(x) := min
p
{|p| : p T−→ x}

The second is Kt complexity, and is more significantly different. The intuition
behind it is that if it is difficult to compute an object—that is, if requires much compu-
tation time—then the object is not simple, even if it has a short program. This can be
formalised as [Li and Vitányi 2008, Definition 7.5.1]

Definition 2.4 (Kt complexity).

KtT(x) := min
p
{|p|+ log t(T, p, x) : p T−→ x, and T takes t(T, p, x) steps

to print x on input p}

log refers to the base 2 logarithm. We write ln for the natural logarithm.

With all complexities, for the rest of the thesis we take them with respect to the
universal machine U, and write K = KU, Km = KmU, and Kt = KtU. We also write
t(p, x) := t(U, p, x).

Kt complexity is distinct from the others not only because it takes time into account,
but also in that it is computable (a proof of which is deferred until Section 2.6), while K
and Km are not [Hutter 2005, Theorem 2.13].
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2.3 Solomonoff induction

Solomonoff induction is a method of sequence prediction that uses the Solomonoff
prior, a probability distribution over sequences over a finite alphabet [Solomonoff
1964a]. The Solomonoff prior weights sequences with short programs more highly, and
Solomonoff induction predicts the most likely continuation of the sequence seen so far
with respect to the prior.

A probability distribution over sequences is a function P that takes a finite string,
and returns the probability that the finite string is a prefix of the whole sequence.
Intuitively, this function should satisfy P(ε) = 1, where ε is the empty string, and
P(x) = ∑b∈B P(xb) for any finite binary string x. If P does satisfy these conditions, we
call it a probability measure. However, we have to deal with objects that are slightly
more general than measures:

Definition 2.5. A semimeasure is a function P : B∗ → R which satisfies

P(ε) = 1 and P(x) ≥ ∑
b∈B

P(xb)

A semimeasure can be thought of as a defective probability measure, which loses
probability mass as the sequence gets longer and longer. Alternatively, it can be
thought of a normal probability measure that puts positive probability on the sequence
ending. Apart from ‘named’ semimeasures like the Solomonoff prior, we usually write
semimeasures with Greek letters such asµ (which we reserve for the ‘true’ semimeasure
of the environment), ν, and ρ.

Like probability measures, we can conditionalise semimeasures on strings, and
write

ν(x|y) = ν(yx)
ν(y)

Note that this conditional is not defined if ν(y) = 0.

With this out of the way, we may define the Solomonoff prior.

Definition 2.6 (Solomonoff prior).

M(x) := ∑
p:p→x

2−|p|

We claim that M is a semimeasure. Firstly, ε → ε, so M(ε) = 20 = 1. Secondly,
for all p such that p → xb, where x ∈ B∗ and b ∈ B, there is some prefix q v p
(from here on, we write q v p to mean that q is a prefix of p, and q @ p to mean
that q is a proper prefix of p) such that q → x. Furthermore, if p → xb, then for no
p′ such that p v p′ is it the case that p′ → xb′ for some b′ ∈ B. Therefore, if q → x,
{p : q v p and ∃b ∈ B : p→ xb} is prefix-free, and this remains true if we take the set
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of p(|q|+1):|p|, where we delete the prefix q from each program. This lets us compute

∑
b∈B

M(xb) = ∑
b∈B

∑
p:p→xb

2−|p|

= ∑
q:q→x,

∃b∈B,p∈B∗ :p→xb

∑
b∈B

∑
p:qvp,p→xb

2−|p|

= ∑
q:q→x,

∃b∈B,p∈B∗ :p→xb

2−|q| ∑
p:qvp,∃b∈B:p→xb

2−|p(|q|+1):|p||

≤ ∑
q:q→x,

∃b∈B,p∈B∗ :p→xb

2−|q| (2.1)

≤ ∑
q:q→x

2−|q|

= M(x)

where we use the Kraft inequality for (2.1).
It is worth noting that, since the function 2−k decays so quickly, M(x) ≈ 2−Km(x),

relating monotone Kolmogorov complexity and the Solomonoff prior2.
There is also a completely different definition of the Solomonoff prior. To give it,

though, we must first go on a slight tangent.

Definition 2.7. A function f : B∗ ×N→ R is finitely computable if there is some prefix
Turing machine T that accepts a prefix coding of x ∈ B∗ followed by a prefix coding
of k ∈ N as input, and outputs a prefix coding of n ∈ Z followed by a prefix coding
of d ∈ N such that n/d = f (x, k). In cases like this, we simply say that T computes
f (x, k).

A function f : B∗ → R is lower semicomputable if there is some finitely computable
function φ : B∗ × N → R such that for all x ∈ B∗, limk→∞φ(x, k) = f (x), and
φ(x, k) ≤ φ(x, k + 1).

Intuitively, if f is a lower semicomputable function, then we can get an increasingly
good approximation of f (x) from below, but we do not necessarily know how good
our approximation is.

We next state a useful theorem:

Theorem 2.8. ν is a lower semicomputable semimeasure if and only if there exists
some monotone Turing machine T such that

ν(x) = ∑
p:p

T−→x

2−|p|

We say that ν is generated by T.

2However, this should not be taken literally, since although 2−Km(x) ×≤ M(x), M(x) 6=
O(2−Km(x)) [Gács 1983].
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For proof, see Li and Vitányi [2008, Theorem 4.5.2]. This in hand, and writingMLSS

for the set of lower semicomputable semimeasures, we now show a rather different
way of writing M:

Theorem 2.9.
M(x) = ∑

ν∈MLSS

wνν(x)

where
wν = ∑

i:ν is generated by Ti

2−|〈i〉|

Proof.

M(x) = ∑
p:p→x

2−|p|

= ∑
i∈N

∑
q:〈i〉q→x

2−|〈i〉q|

= ∑
i∈N

2−|〈i〉| ∑

q:q
Ti−→x

2−|q|

= ∑
ν∈MLSS

∑
i:ν is generated by Ti

2−|〈i〉|ν(x)

= ∑
ν∈MLSS

wνν(x)

This property of the Solomonoff prior, that it is a mixture over all lower semicom-
putable semimeasures (which, in practice, contains all probability distributions that we
might care about learning), is actually what is used to show its optimality properties.

Suppose that we have some loss function `(xt, yt) which represents the loss that
our predictor incurs when predicting yt if the actual next symbol is xt. We define
the Λν predictor as the predictor which, at each timestep, minimises ν-expected loss,
predicting

yΛν
t := argmin

yt∈B
∑

xt∈B
ν(xt|x<t)`(xt, yt)

where the symbols previously seen are x<t := x1:t−1. If ν(x<t) = 0, we let Λν predict
an arbitrary symbol. We would like our predictor to have low µ-expected total loss,
where µ is the true distribution of outputs. Up to time n, we write this total loss as

LΛν
nµ := Eµ

[
n

∑
t=1

`
(

xt, yΛν
t

)]

We may now state our first optimality theorem for Solomonoff induction:
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Theorem 2.10.

LΛM
nµ − LΛµ

nµ ≤ O
(√

LΛµ
nµ

)
and for any predictor Λ,

LΛM
nµ − LΛ

nµ ≤ O
(√

LΛM
nµ

)
In particular, if µ is deterministic, ΛM only incurs finite loss.

For a proof, see Hutter [2005, Theorem 3.48]. This theorem essentially shows that
Solomonoff induction does not do much worse than ideal prediction, and that no
predictor does much better. Note that if we let `(xt, yt) = 1 − δxt ,yt , then the loss
incurred by the predictor is simply the number of errors it makes, so the loss bound
has an error bound as a special case.

We also have a Pareto optimality result for Solomonoff induction:

Definition 2.11. Let F (µ,ν) be a performance measure of priors ν in environments µ
that we wish to be as small as possible. We call prior ν Pareto optimal in environment
classM if there is no prior ρ such that for all µ ∈ M, F (µ,ρ) ≤ F (µ,ν), and for at
least one µ ∈ M, F (µ,ρ) < F (ν,ν). In other words, there must be no prior that is at
least as good as ν in all environments inM and better in one.

Theorem 2.12 (Pareto optimality of Solomonoff induction). M is Pareto optimal in
the class of lower semicomputable semimeasures other than M with respect to the
following performance measures:

st(µ,ν) = ∑
xt

(µ(xt|x<t)− ν(xt|x<t))
2

Sn(µ,ν) = Eµ

[
n

∑
t=1

st(µ,ν)

]

dt(µ,ν) = ∑
xt

µ(xt|x<t) ln
µ(xt|x<t)

ν(xt|x<t)

Dn(µ,ν) = Eµ

[
n

∑
t=1

dt(µ,ν)

]
lt(µ,ν) = Eµ

[
`(xt, yΛν

t ) | x<t

]
Ln(µ,ν) = Eµ

[
n

∑
t=1

lt(µ,ν)

]

For proof, see Hutter [2005, Theorem 3.66]. Note that the theorem as stated there
refers to priors ξM = ∑ν∈M wνν being Pareto optimal inM. It would therefore apply
toMLSS, in our case, which is trivial, since M ∈ MLSS, and presumably the predictor
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that uses M performs the best in environment M. However, we note that

M(x) = ∑
ν∈MLSS

wνν(x)

= wM M(x) + ∑
ν∈MLSS\{M}

wνν(x)

= ∑
ν∈MLSS\{M}

wν
1− wM

ν(x)

Therefore, we can write M as a mixture of measures in MLSS \ {M}, which lets us
apply the theorem.

2.4 Reinforcement learning

In reinforcement learning, an agent interacts with the environment in cycles: the agent
takes some action, and the environment gives the agent some percept and reward. The
aim of the agent is to maximise the amount of reward that it receives, and to have some
strategy to do this with no prior knowledge of the environment.

More precisely, our setup is the agent model, as defined in [Sutton and Barto 1998,
Chapter 3]. We have an agent situated in an environment, interacting in cycles. In cycle
k, the agent outputs some action ak ∈ A, which the agent can choose however it likes,
and the environment outputs some percept ek ∈ E , which can be decomposed into an
observation ok ∈ O and reward rk ∈ R ⊂ [0, 1].

The agent is defined by a policy π : (A× E)∗ → A that determines the action that
the agent takes given the prior history.

To explain how we define the environment, a new definition is required.

Definition 2.13. A conditional semimeasure is a function ν : E∗ ×A∞ → R such that for
all action sequences a1:∞,

ν(ε||a1:∞) = 1 and ν(e1:t||a1:∞) ≥ ∑
et+1∈E

ν(e1:tet+1||a1:∞)

A conditional semimeasure is chronological if ν(e1:t||a1:∞) = ν(e1:t||a′1:∞) whenever
a1:t = a′1:t. Therefore, if ν is a chronological conditional semimeasure, we may write
ν(e1:t||a1:∞) simply as ν(e1:t||a1:k) for any k ≥ t. We conditionalise on chronological
conditional semimeasures, writing

ν(ek:t|e<k||a1:∞) =
ν(e1:t||a1:∞)

ν(e<k||a1:∞)

The environment is defined by a chronological conditional semimeasure µ. This
semimeasure gives the probabilities of the environment’s responses given some action
history, and the chronological condition guarantees that the environmental response at
time t does not depend on actions performed after t. Also, for convenience, we write
an element of (A× E)∗ as æ1:k := a1e1a2e2 · · · akek.
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The interaction could either last for a finite time, or for an infinite time. In the finite
case, we wish to judge the agent by its expected total reward. There are two ways of
doing this: one takes expected total reward over all histories of length m, where m is
the lifetime of the agent. This would give

Vπµ
1m = ∑

e1:m

(r1 + · · ·+ rm)µ(e1:m||a1:m)

where ak = π(æ<k).
In the infinite lifetime case, we let the agent look mk timesteps ahead at time k. So,

at each timestep k, it has some policy πk which would have value

Vπkµ
kmk

= ∑
ek:mk

(rk + · · ·+ rmk)µ(ek:mk |e<k||a1:mk)

where for t ≥ k, at = πk(æ<t) (note that Vπkµ
kmk

actually depends on the interaction
history æ<k, a dependence which we omit for succinctness). This agent acts according
to πk at time k, and plans to do so in the future, but at time k + 1 it will act according
to πk+1 which may be different to πk—in particular, if the agent chooses the policy
which maximises Vπkν

kmk
for some chronological conditional semimeasure ν, this may be

different for each timestep k if some actions receive high enough reward between mk
and mk+1. Therefore, Vπkµ

kmk
represents the value the agent would receive if it stuck to its

plan, rather than the value the agent actually does receive3.
A different approach to working with agents with infinite lifetime is to discount

reward received at timestep k by some factor γk, so that ∑
∞
k=1 γk < ∞. This gives a

value function

Vπµ
kγ =

1
Γk

lim
m→∞ ∑

æk:m

(γkrk + · · ·+γmrm)µ(ek:m|e<k||a1:m)

where at = π(æ<t) and Γk = ∑
∞
t=k γk. This scheme, with γk = γk for some γ ∈ (0, 1), is

most typically used in reinforcement learning, since it looks at the entire performance
of the agent and does not incentivise agents to switch policy [Sutton and Barto 1998],
but we do not use it much in this thesis.

2.5 AIXI

AIXI is a reinforcement learner that is based on an analogue of the Solomonoff prior
for chronological conditional semimeasures:

Definition 2.14 (Solomonoff conditional semimeasure).

M(e1:t||a1:∞) := ∑
p:(p,a1:t)→e1:t

2−|p|

3Note that this requires a broadening of the notion of an agent to a family of policies, one at each
timestep.
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Note that we use the same symbol for the conditional semimeasure M(e1:t||a1:∞) as for
the semimeasure M(x). This should not be too confusing, since we typically include the
arguments to each function, and they are used in different contexts (M(x) in the context
of sequence prediction, and M(e1:t||a1:∞) in the context of reinforcement learning).

We claim that M is a chronological conditional semimeasure. Firstly, it is clear that
M(e1:t||a1:∞) only depends on a1:t. Secondly, since (ε,ε)→ ε, M(ε||a1:∞) = 1. Thirdly,
if (p, a1:t) → e1:t, then by our definition of computation on mixed-tape machines,
(p, a1:t+1) → e1:t, so the rest of the proof goes identically to that of proving that the
Solomonoff prior is a semimeasure.

Next, we give two theorems that closely relate our theory of chronological condi-
tional semimeasures to that of plain semimeasures:

Theorem 2.15. The function ν is a lower semicomputable chronological conditional
semimeasure (LSCCS) if and only if there exists some mixed-input Turing machine T
such that

ν(e1:t||a1:∞) = ∑
p:(p,a1:t)

T−→e1:t

2−|p|

We say that ν is generated by T.

Note that for this theorem to be rigorous, we must think of the input to ν as
actually being æ1:t and extend our notion of lower semicomputability to functions
(A× E)∗ → R. The proof is essentially identical to that of Theorem 2.8.

Theorem 2.16. LetMLSCCS be the class of lower semicomputable chronological condi-
tional semimeasures. Then,

M(e1:t||a1:∞) = ∑
ν∈MLSCCS

wνν(e1:t||a1:∞)

where
wν = ∑

i:ν is generated by Ti

2−|〈i〉|

Again, the proof is essentially identical to that of Theorem 2.9.
We define AIXI as the policy which maximises VπM

1m or Vπk M
kmk

. In the finite lifetime
case we write it as πM, and in the infinite lifetime case we write it as πM

k at timestep
k. Given the success of Solomonoff induction, we might suspect that AIXI performs
well in all environments inMLSCCS. Indeed, we can use the Solomonoff prediction
results to show that AIXI capably predicts the next percepts along its action history.
However, this does not suffice: for good performance, the agent needs to predict what
will happen given actions that the agent may not take.

AIXI is known to be Pareto optimal: that is, there is no policy that does at least
as good as AIXI in all environments inMLSCCS \ {M} and strictly better in one, as
measured by total value gained [Hutter 2005, Theorem 5.23]. However, it was recently
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proved that any policy is Pareto optimal inMLSCCS \ {M}, rendering Pareto optimality
trivial4 [Leike and Hutter 2015a].

Furthermore, AIXI is non-trivially sub-optimal. We might wish that for every
environment µ where the agent has discounted infinite lifetime, the future value of
agent π converges to that of the optimal policy πµ given the interaction history of π ,
meaning that as time goes on, the agent makes fewer and fewer mistakes:

∀µ ∈ MLSCCS lim
k→∞

(
Vπµµ

kγ −Vπµ
kγ

)
= 0 with µ-probability 1 (2.2)

We might settle for this convergence ‘on average’:

∀µ ∈ MLSCCS lim
k→∞

1
k

k

∑
t=1

(
Vπµµ

tγ −Vπµ
tγ

)
= 0 with µ-probability 1 (2.3)

Note that the probability quantifiers refer to the environmental sequence, which affects
the agent’s actions. In Lattimore and Hutter [2011], it is shown that no agent satisfies
(2.2), but that some agents satisfy (2.3). However, AIXI does not satisfy (2.3) when
the discounting is computable: in some bandit-like environments, it stops exploring,
causing it to be non-trivially sub-optimal by this measure [Orseau 2013].

However, a generalisation of AIXI does have non-trivial optimality properties. For
any class of environmentsM, we can define the Bayesian mixture

ξM = ∑
ν∈M

wνν where wν > 0, ∑
ν∈M

wν ≤ 1

This generalisation proves to have an interesting optimality property in some environ-
ment classes.

Definition 2.17. In the finite lifetime setting, a sequence of policies πm is self-optimising
in environment classM if for all ν ∈ M,

lim
m→∞

(
1
m

Vπmν
1m − 1

m
Vπνν

1m

)
= 0

That is to say, the average reward of πm approaches the average reward of πν as the
lifetime approaches infinity.

In the discounted infinite lifetime setting, a policy π is self-optimising in environment
classM if for all ν ∈ M,

lim
k→∞

(
Vπν

kγ −Vπνν
kγ

)
= 0 with ν-probability 1

That is to say, the value-to-go of π almost surely approaches the value-to-go of πν

(given the action history of π) as time goes to infinity. Note that these two definitions
are analogous, since Vπmν

1m ∈ [0, m], while Vπν
kγ ∈ [0, 1]. In other words, in the finite

4In fact, the theorem showed that Pareto optimality was trivial in any environment containing all
POMDPs. POMDPs, or Partially Observable Markov Decision Processes, are defined in Murphy [2000].
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lifetime setting, we average over past reward, while in the discounted infinite lifetime
setting, we have already averaged over future reward in the definition of Vπν

kγ .

The sequence of policies πξMm that maximise VπξM
1m is self-optimising whenever any

sequence of policies is self-optimising inM in the finite lifetime setting, and the policy
πξM is self-optimising whenever any policy is self-optimising inM in the discounted
infinite lifetime setting. Therefore, ξM is ‘as self-optimising as possible’ [Hutter 2005,
Theorems 5.29, 5.34]. Furthermore, this is a non-trivial optimality condition: the
class of ergodic MDPs admits self-optimising policies (both for finite lifetime and for
discounted infinite lifetime whenever limk→∞ γk+1/γk = 1).

2.6 Schmidhuber’s speed prior

Loosely speaking, the theory of Solomonoff induction starts with an incomputable
complexity measure, formalises Occam’s razor with respect to that complexity measure,
and results in a prior that is incomputable but good at prediction. We may therefore
wonder if we could start with the computable Kt complexity measure, formulate a
prior that rewards simplicity with respect to this measure, and get good results from
that. This line of reasoning is the inspiration for the definition of the speed prior.

To define the speed prior as it appears in Schmidhuber [2002], we must first define
the FAST algorithm with respect to our reference monotone UTM U. For each i ∈ N,
FAST performs PHASE i, whereby 2i−|p| instructions of all programs satisfying |p| ≤ i
are executed as they would be on U, and the outputs are sequentially printed on
adjacent sections of the output tape, separated by blanks. If string x is computed by
program p in PHASE i, then we write p→i x. Note that p→i x iff |p|+ log t(p, x) ≤ i,
showing the relation to Kt complexity5. With this out of the way, we can now give the
definition.

Definition 2.18 (Schmidhuber’s speed prior).

SFast(x) :=
∞
∑
i=1

2−i
∑

p→ix
2−|p|

Note that SFast is a semimeasure.
Due to the properties of FAST, this prior penalises strings with high Kt complexity.

Two properties of SFast make this clear. The first is that the prior probability with
respect to SFast of all strings incomputable within time t is at most 1/t. The second is
more complex:

Theorem 2.19. Let x1:∞ ∈ B∞. Suppose that px ∈ B∗ outputs x1:n within at most f (n)

5In fact, this provides a way of calculating the Kt complexity of a string x to the nearest integer: simply
run FAST until the PHASE where x is first printed, and estimate Kt(x) by the number of that PHASE. There
is an upper bound on how long this takes, since for any x there is the ‘print x’ program which has length
|x|+ O(1) and takes time O(|x|) to print, meaning that it outputs x in PHASE |x|+ log |x|+ O(1).
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steps for all n, and limn→∞ f (n)/g(n) = 0. Then,

lim
n→∞

∑
∞
i=1 2−i

∑p−−−−→
i,≥g(n)

x1:n
2−|p|

∑
∞
i=1 2−i ∑p−−−−→

i,≤ f (n)
x1:n

2−|p|
= 0

where p −−−−→
i,≤ f (n)

x1:n (respectively, p −−−−→
i,≥g(n)

x1:n) means that p computes x1:n in PHASE

i within at most f (n) (respectively, at least g(n)) timesteps.

In other words, if some program computes x1:n in time f (n), then the contribution
to SFast by programs that take much longer than f (n) goes to 0. In this thesis, we will
call any prior which satisfies these two properties a speed prior.

Furthermore, SFast is computable: if we wish to compute SFast(x) to within absolute
accuracy of 2−i (that is, to get a result that is no more than 2−i less than the actual value
of SFast(x)), all we need do is perform the first i PHASEs of FAST, and add up all of the
contributions to SFast found in those PHASEs.

Now that SFast has been defined, this thesis investigates it and a different prior
with similar properties, aiming to determine whether they are efficiently computable,
whether they are successful at sequence prediction, and whether they can be used for
reinforcement learning.
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Chapter 3

The Other Speed Prior

3.1 Definition of SKt

In this section, we introduce a prior that penalises strings of high Kt complexity more di-
rectly. In analogy with the Solomonoff prior M(x) = ∑p→x 2−|p| = ∑p→x 2−Km-cost(p,x),
where

Km-cost(p, x) :=

{
|p| if p→ x∞ otherwise

is the minimand of monotone Kolmogorov complexity, we define the Kt-cost of a
computation of a string x by program p as the minimand of Kt, that is,

Kt-cost(p, x) := |p|+ log t(p, x)

(where if p 6→ x, then t(p, x) := ∞). We then define our speed prior as

Definition 3.1 (Our speed prior).

SKt(x) := ∑
p→x

2−Kt-cost(p,x) = ∑
p→x

2−|p|

t(p, x)

This is also a semimeasure.

3.2 Comparable definitions

Definitions 2.18 of SFast and 3.1 of SKt have been given in different forms—the first in
terms of PHASEs of FAST, and the second in terms of Kt-cost. In this section, we show
that each can be rewritten in a form similar to the other’s definition, which should shed
light on the differences and similarities between the two. Our rewriting of SFast is used
later to bound its computation time.

Proposition 3.2.

SFast(x) ×= ∑
p→x

2−2|p|

t(p, x)

21
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The idea of the proof, and also of the proof of Proposition 3.3, is that if p→i x then
i ≈ |p|+ log t(p, x), so 2−i2−|p| ≈ 2−2|p|/t(p, x).

Proof. First, we note that for each program p and string x, if p→i x, then for all j ≥ i,
p→ j x. Now,

∞
∑
j=i

2− j × 2−|p| = 2× 2−i × 2−|p|

⇒
∞
∑
i=1

2−i
∑

p→ix
2−|p| ×=

∞
∑
i=1

2−i
∑

p→ix
p 6→i−1x

2−|p| (3.1)

since all of the contributions to SFast(x) from program p in phases j ≥ i add up to twice
the contribution from p in PHASE i alone.

Next, suppose p→i x. Then, by the definition of FAST,

t(p, x) ≤ 2i−|p| ⇔ log t(p, x) ≤ i− |p| ⇔ |p|+ log t(p, x) ≤ i

Also, if p 6→i−1 x, then either |p| > i − 1, implying |p| + log t(p, x) > i − 1, or
t(p, x) > 2i−1−|p|, also implying |p| + log t(p, x) > i − 1. Therefore, if p →i x and
p 6→i−1 x, then

i− 1 < |p|+ log t(p, x) ≤ i

implying
− |p| − log t(p, x)− 1 < −i ≤ −|p| − log t(p, x) (3.2)

Subtracting |p| and exponentiating yields

1
2t(p, x)

2−2|p| ≤ 2−i−|p| ≤ 2−2|p|

t(p, x)

giving

2−i−|p| ×=
2−2|p|

t(p, x)

Therefore,

∞
∑
i=1

2−i
∑

p→ix
p 6→i−1x

2−|p| ×= ∑
p→x

2−2|p|

t(p, x)

which, together with equation (3.1), proves the proposition.

Proposition 3.3.

SKt(x) ×=
∞
∑
i=1

2−i (#{p ∈ B∗ : p→i x and p 6→i−1 x})
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Proof. Using equation (3.2), we have that if p→i x and p 6→i−1 x, then

2−|p|−1

t(p, x)
≤ 2−i ≤ 2−|p|

t(p, x)

so

2−i ×=
2−|p|

t(p, x)

Summing over all programs p such that p→i x and p 6→i−1 x, we have

2−i (#{p ∈ B∗ : p→i x and p 6→i−1 x}) ×= ∑
p→ix,

p 6→i−1x

2−|p|

t(p, x)

Then, summing over all phases i, we have

∞
∑
i=1

2−i (#{p ∈ B∗ : p→i x and p 6→i−1 x}) ×= ∑
p→x

2−|p|

t(p, x)

3.3 SKt is a speed prior

Although we have defined SKt, we have not shown any results that indicate it deserves
to be called a speed prior. As explained in Section 2.6, two key properties of SFast justify
its description as a speed prior: firstly, that the cumulative prior probability measure
of all x incomputable in time t is at most inversely proportional to t, and secondly, that
if x1:∞ ∈ B∞ and program px ∈ B∗ computes x1:n within at most f (n) steps, then the
contribution to SFast(x1:n) by programs that take time much longer than f (n) vanishes
as n→ ∞. In this subsection, we prove that both of these properties also hold for SKt.

Proposition 3.4. Let Ct be the set of strings x that are incomputable in time t that
additionally satisfy the following property: for any proper prefix y @ x, y is computable
in time t. By definition, all strings that are incomputable in time t have as a prefix an
element of Ct, and Ct is a prefix-free set (by construction). Furthermore, the probability
of all strings incomputable in time t is simply the sum of the probabilities of all elements
of Ct. Given this definition,

∑
x∈Ct

SKt(x) ≤ 1
t

Proof. Using the definition of SKt and that t(p, x) ≥ t for all x ∈ Ct, we calculate

∑
x∈Ct

SKt(x) = ∑
x∈Ct

∑
p→x

2−|p|

t(p, x)
≤ 1

t ∑
x∈Ct

∑
p→x

2−|p| ≤ 1
t

by the Kraft inequality, since the fact that Ct is a prefix-free set guarantees that the set of
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programs that compute elements of Ct is also prefix-free, due to our use of monotone
machines.

Theorem 3.5. Let x1:∞ ∈ B∞ be such that that there exists a program px ∈ B∗ which
outputs x1:n in f (n) steps for all n ∈ N. Let limn→∞ f (n)/g(n) = 0. Then,

lim
n→∞

∑p−−−→
≥g(n)

x1:n
2−|p|/t(p, x1:n)

∑p−−−→
≤ f (n)

x1:n
2−|p|/t(p, x1:n)

= 0

where p −→
≤t

x (respectively, p −→
≥t′

x) means that program p computes string x in no

more than t (respectively, no less than t′) steps.

Proof.

lim
n→∞

∑p−−−→
≥g(n)

x1:n
2−|p|/t(p, x1:n)

∑p−−−→
≤ f (n)

x1:n
2−|p|/t(p, x1:n)

≤ lim
n→∞

∑p−−−→
≥g(n)

x1:n
2−|p|/g(n)

2−|px|/ f (n)
(3.3)

≤ lim
n→∞ f (n)

g(n)
∑p→x1:n

2−|p|

2−|px| (3.4)

≤ lim
n→∞ f (n)

g(n)
1

2−|px| (3.5)

= 0

Equation (3.3) comes from increasing 1/t(p, x1:n) to 1/g(n) in the numerator, and
decreasing the denominator by throwing out all terms of the sum except that of px,
which takes f (n) time to compute x1:n. Equation (3.4) takes f (n)/g(n) out of the
fraction, and increases the numerator by adding contributions from all programs that
compute x1:n. Equation (3.5) uses the Kraft inequality to bound ∑p→x1:n

2−|p| from
above by 1. Finally, we use the fact that limn→∞ f (n)/g(n) = 0.



Chapter 4

Prediction

4.1 Polynomial time estimable measures

In this section, we prove a performance bound on SKt-based sequence prediction, when
predicting a sequence drawn from a measure that is estimable in polynomial time.
Since we were unable to prove a similar bound for SFast, this provides some weak
evidence that SKt is better at prediction than SFast.

For the purpose of this section, we write SKt somewhat more explicitly as

SKt(x) = ∑
p

U−→x

2−|p|

t(U, p, x)

and give some auxiliary definitions. Let 〈·〉B∗ be a prefix-free coding of the strings
of finite length and 〈·〉N be a prefix-free coding of the integers, where both of these
prefix-free codings are computable and decodable in polynomial time.

Definition 4.1. A function f : B∗ → R is finitely computable if there is some prefix Turing
machine Tf that when given input 〈x〉B∗ outputs 〈m〉N〈n〉N, where f (x) = m/n. The
function f is finitely computable in polynomial time if it takes Tf at most p(|x|) timesteps
to halt on input x, where p is a polynomial.

Definition 4.2. Let f , g : B∗ → R. The function g is estimable in polynomial time by f if f
is finitely computable in polynomial time and f (x) ×= g(x). The function g is estimable
in polynomial time if it is estimable in polynomial time by some function f .

Note that if f is finitely computable in polynomial time, it is estimable in polynomial
time by itself. For a measure µ, estimability in polynomial time captures our intuitive
notion of efficient computability: we only need to know µ up to a constant factor for
all practical purposes, and we can find this out in polynomial time.

An example of a measure that is estimable in polynomial time is µπ , which gives
probability 2/3 that the ith bit will be the ith digit of the binary expansion of the cir-
cle constant π , and 1/3 otherwise. For instance, since π = 11.0010 · · · in binary,
µπ (11001) = (2/3)5, while µπ (100110) = (2/3)4 × (1/3)2. This is estimable in poly-
nomial time because we can calculate the ith digit of π in polynomial time [Bailey et al.
1997], and it only takes polynomial time to multiply numbers.
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Key to our results, both in this chapter and in Chapter 5, will be that for measures
µ estimable in polynomial time by semimeasures,

SKt(x)
×≥ µ(x)

(g(|x|)−O(1) logµ(x))O(1)

and

SFast(x)
×≥ µ(x)2

(g(|x|)−O(1) logµ(x))O(1)

Compare this to the simpler dominance relation for the Solomonoff prior, M(x)
×≥ µ(x).

Theorem 4.3. If µ is a measure that is estimable in polynomial time by some semimea-
sure ν, and x is a sequence sampled from µ, then the expected loss incurred by the
ΛSKt predictor is bounded by

L
ΛSKt
nµ − LΛµ

nµ ≤ 2Dn + 2
√

LΛµ
nµDn

where Dn = O(log n).1

Since Λµ can incur at most O(n) loss in timesteps 1 to n, this means that ΛSKt only
incurs at most O(

√
n log n) extra loss in expectation, although this bound is be much

tighter in more structured environments where Λµ makes few errors.
In order to prove this theorem, we use the following lemma:

Lemma 4.4. Let ν be a semimeasure that is finitely computable in polynomial time.
There exists a Turing machine Tν such that for all x ∈ B∗

ν(x) = ∑

p
Tν−→x

2−|p| (4.1)

and
2−KmTν (x) ≥ ν(x)/4 (4.2)

where KmTν (x) is the length of the shortest program for x on Tν.2

Note that there is a proof in Li and Vitányi that there is some machine Tν such that
(4.1) holds [Li and Vitányi 2008, Theorem 4.5.2], but they do not prove (4.2), and we
wish to have insight into the operation of the machine in order to prove Theorem 4.3.

Proof of Lemma 4.4. The machine Tν is essentially a decoder of an algorithmic coding
scheme with respect to ν. It uses the natural correspondence between B∞ and [0, 1],

1A similar bound that can be proved the same way is
√

L
ΛSKt
nµ −

√
LΛµ

nµ ≤
√

2Dn for the same Dn [Hutter
2007, Equations 8, 5].

2Note that this lemma would be false if we were to let ν be an arbitrary lower-semicomputable
semimeasure, since if ν = M, this would imply that 2−Km(x) ×= M(x), which was disproved in Gács
[1983].
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associating a binary string x1x2x3 · · · with the real number 0.x1x2x3 · · · . It determines
the location of the input sequence on this line, and then assigns certain intervals for
output strings, such that the width of the intervals for output string x is equal to ν(x).
Then, if input string p lies inside the interval for the output string x, it outputs x.

Tν first calculates ν(0) and ν(1), and sets [0,ν(0)) as the output interval for 0 and
[ν(0),ν(0) + ν(1)) as the output interval for 1. It then reads the input, bit by bit. After
reading input p1:n, it constructs the input interval [0.p1 p2 · · · pn, 0.p1 p2 · · · pn111111 · · · ),
which represents the interval that 0.p1 p2 · · · pn pn+1 · · · could lie in. It then checks if
this input interval is contained in one of the output intervals. If it is, then it prints
output appropriate for the interval, and if not, then it reads one more bit and repeats
the process.

Suppose the first output bit is a 1. Then, Tν calculates ν(10) and ν(11), and
forms the new output intervals: [ν(0),ν(0) + ν(10)) for outputting 0, and [ν(0) +
ν(10),ν(0) + ν(10) + ν(11)) for outputting 1. It then reads more input bits until the
input interval lies within one of these new output intervals, and then outputs the
appropriate bit. The computation proceeds in this fashion.

Equation (4.1) is satisfied, because ∑
p

Tν−→x
2−|p| is just the total length of all possible

input intervals that fit inside the output interval for x, which by construction is ν(x).
To show that (4.2) is satisfied, note that 2−KmTν (x) is the length of the largest input

interval for x. Now, input intervals are binary intervals (that is, their start points and
end points have a finite binary expansion), and for every interval I, there is some binary
interval contained in I with length ≥ 1/4 that of I. Therefore, the output interval for x
contains some input interval with length at least 1/4 that of the length of the output
interval. Since the length of the output interval for x is just ν(x), we can conclude that
2−KmTν (x) ≥ ν(x)/4.

Proof of Theorem 4.3. Using Lemma 4.4, we show a bound on SKt that bounds its KL
divergence with µ. We then apply Hutter’s unit loss bound [Hutter 2005, Theorem
3.48] (originally shown for the Solomonoff prior, but valid for any prior) to show the
desired result.

First, we reason about the running time of the shortest program that prints x
on Tν. Since we would only calculate ν(y0) and ν(y1) for y v x, this amounts
to 2|x| calculations. Each calculation need only take polynomial time in the length
of its argument, because Tν could just simulate the machine that takes input x and
returns the numerator and denominator of x, prefix-free coded, and it only takes
polynomial time to undo this prefix-free coding. Therefore, the calculations take at most
2|x| f (|x|) =: g(|x|), where f is a polynomial. We also, however, need to read all the bits
of the input, construct the input intervals, and compare them to the output intervals.
This takes time linear in the number of bits read, and for the shortest program that prints
x, this number of bits is (by definition) KmTν (x). Since 2−KmTν (x) ×= ν(x), KmTν (x) ≤
− logν(x) + O(1), and since ν(x) ×= µ(x),− logν(x) ≤ − logµ(x) + O(1). Therefore,
the total time taken is bounded above by g(|x|)−O(1) logµ(x), where we absorb the
additive constants into g(|x|).
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This out of the way, we can calculate

SKt(x) = ∑
p

U−→x

2−|p|

t(U, p, x)

= ∑
i∈N

2−|〈i〉| ∑

q
Ti−→x

2−|q|

t(Ti, q, x)O(1)

×≥ ∑

p
Tν−→x

2−|p|

t(Tν , p, x)O(1)

≥ 2−KmTν (x)

(g(|x|)−O(1) logµ(x))O(1)

×≥ µ(x)
(g(|x|)−O(1) logµ(x))O(1)

(4.3)

Now, Hutter’s unit loss bound tells us that

L
ΛSKt
nµ − LΛµ

nµ ≤ 2Dn(µ||SKt) + 2
√

LΛµ
nµDn(µ||SKt) (4.4)

where Dn(µ||SKt) := Eµ [lnµ(x1:n)/SKt(x1:n)] is the relative entropy. We can calculate
Dn(µ||SKt) using equation (4.3):

Dn(µ||SKt) = Eµ
[

ln
µ(x1:n)

SKt(x1:n)

]
×≤ Eµ

[
ln
(
(g(n)−O(1) logµ(x1:n))

O(1)
)]

×≤ Eµ [ln(g(n)−O(1) logµ(x1:n))]

≤ lnEµ [g(n)−O(1) logµ(x1:n)] (4.5)

= ln (g(n) + O(1)Hµ(x1:n))

where Hµ(x1:n) denotes the binary entropy of the random variable x1:n with respect to
µ

≤ ln (g(n) + O(n))
×= log n (4.6)

where (4.5) comes from Jensen’s inequality. Equations (4.4) and (4.6) together prove
the theorem.

We therefore have a loss bound on the SKt-based sequence predictor in environ-
ments that are estimable in polynomial time by a semimeasure. Furthermore:

Corollary 4.5.
L
ΛSKt
nµ ≤ 2Dn(µ||SKt)

×= log n
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for deterministic measures3 µ computable in polynomial time, if correct predictions
incur no loss.

Compare to M-based prediction, which only incurs constant loss in this situation.
We should note that this method fails to prove similar bounds for SFast, since we

instead get

SFast(x) ×= ∑
p

U−→x

2−2|p|

t(U, p, x)

×≥ µ(x)2

(g(|x|)−O(1) logµ(x))O(1)
(4.7)

which gives us

Dn(µ||SFast) = Eµ
[

ln
µ(x1:n)

SFast(x1:n)

]
≤ O(log n) + Hµ(x1:n)

Since Hµ(x1:n) can grow linearly in n (for example, take µ to be λ(x) = 2−|x|, the
uniform measure), this can only prove a trivial linear loss bound.

One important application of Theorem 4.3 is to the 0-1 loss function. Then, it states
that a predictor that outputs the most likely successor bit according to SKt only makes
logarithmically many errors in a deterministic environment computable in polynomial
time. In other words, SKt quickly learns the sequence it is predicting, making very few
errors.

4.2 Arbitrary measures

In this section, we generalise the prediction result above to measures of arbitrary time
complexity.

Definition 4.6. Let f , g : B∗ → R. The function g is estimable in h(n) time by f if f is
finitely computable in at most h(n) time and f (x) ×= g(x).

Theorem 4.7. If µ is a measure that is estimable in f (n) time by some semimeasure
ν, and x is a sequence sampled from µ, then the expected loss incurred by the ΛSKt

predictor is bounded by

L
ΛSKt
nµ − LΛµ

nµ ≤ 2Dn + 2
√

LΛµ
nµDn

where Dn
×≤ log n + log f (n).

Proof. Reviewing the operation of the machine Tν as defined in Lemma 4.4, we see
that in order to output x, we must calculate the value of ν a total of 2|x| times, and

3That is, measures that give probability 1 to prefixes of one particular infinite sequence.
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that each time we calculate we need time |x|O(1) f (|x|), not just to calculate, but also
to prepare the output intervals for comparison. We still must read input of length
− logµ(x) + O(1). Therefore,

SKt(x)
×≥ µ(x)

(|x|O(1) f (|x|)−O(1) logµ(x))O(1)

so

Dn(µ||SKt)
×≤ lnEµ

[
nO(1) f (n)−O(1) logµ(x1:n)

]
= ln

(
nO(1) f (n) + O(1)Hµ(x1:n)

)
≤ ln

(
nO(1) f (n) + O(n)

)
×≤ log f (n) + log n

We then apply Hutter’s unit loss bound.

Note that this bound is trivial if f (n) is exponential, but if f (n) is 2o(n), we get a
bound that is o(n) (assuming Λµ makes o(n) expected errors).



Chapter 5

Time Complexity

We have proved that SFast is computable in Section 2.6. However, no bounds are given
for the running time of the proposed algorithm. Given that the major advantage of
SFast-based prediction over M-based prediction is its computability, it is of interest
to determine the time required to compute SFast, and whether such a computation is
feasible or not. The same questions apply to SKt, to a greater extent because we have
not yet shown that SKt is computable.

In this chapter, we show that an arbitrarily good approximation to SFast(x) is
computable in time exponential in |x|, and an arbitrarily good approximation to SKt(x)
is computable in time doubly-exponential in |x|. We do this by explicitly constructing
algorithms that perform PHASEs of FAST until enough contributions to SFast or SKt are
found to constitute a sufficient proportion of the total.

We also show that no such approximation of SKt can be computed in polynomial
time. We do this by contradiction: showing that if it were possible to do so, we would
be able to construct an ‘adversarial’ sequence that was computable in polynomial time,
yet could not be predicted by our approximation of SKt, a contradiction.

5.1 Upper bounds

5.1.1 SFast

Theorem 5.1. For any ε > 0, there exists an approximation SεFast of SFast such that
|SεFast/SFast − 1| ≤ ε and SεFast(x) is computable in time exponential in |x|.

Proof. First, we note that in PHASE i of FAST, we try out 21 + · · ·+ 2i = 2i+1 program
prefixes p, and each prefix p gets 2i−|p| steps. Therefore, the total number of steps in
PHASE i is 21 × 2i−1 + 22 × 2i−2 + · · ·+ 2i × 2i−i = i2i, and the total number of steps
in the first k PHASEs is

# steps =
k

∑
i=1

i2i = 2k+1(k− 1) + 2 (5.1)

Now, suppose we want to compute a sufficient approximation SεFast(x). If we
compute k phases of FAST and then add up all the contributions to SFast(x) found in

31



32 Time Complexity

those phases, the remaining contributions must add up to≤ ∑
∞
i=k+1 2−i = 2−k. In order

for the contributions we have added up to contribute ≥ 1−ε of the total, it suffices to
use k such that

k =

⌊
log

(
1

εSFast(x)

)
+ 1
⌋

(5.2)

Now, we know that since the uniform measure λ(x) = 2−|x| is computable in
polynomial time, we can substitute λ into equation (4.7) to obtain

SFast(x)
×≥ 2−2|x|

(|x|O(1) + log(2|x|))O(1)
=

1
|x|O(1)22|x| (5.3)

Substituting equation (5.3) into equation (5.2), we get

k ≤ log

(
O(22|x||x|O(1))

ε

)
+ 1 = − logε+ 2|x|+ O(log |x|) (5.4)

So, substituting equation (5.4) into equation (5.1),

# steps ≤ 2− logε+2|x|+O(log |x|)+1(− logε+ 2|x|+ O(log |x|)− 1) + 2

=
1
ε

22|x||x|O(1)(− logε+ 2|x|+ O(log |x|)) + O(1)

≤ 2O(|x|)

Therefore, SεFast is computable in exponential time.

5.1.2 SKt

Theorem 5.2. For any ε > 0, there exists an approximation SεKt of SKt such that
|SεKt/SKt − 1| ≤ ε and SεKt(x) is computable in time doubly-exponential in |x|.

Proof. We again use the general strategy of computing k PHASEs of FAST, and adding up
all the contributions to SKt(x) we find. Once we have done this, the other contributions
come from computations with Kt-cost > k. Therefore, the programs making these
contributions either have a program of length > k, or take time > 2k (or both).

First, we bound the contribution Ct>2k to SKt(x) by computations of time > 2k,
writing p −→

>i
x to mean p computes x in time > i:

Ct>2k ≤ ∑
p−−→

>2k
x

2−|p|

t(p, x)
<

1
2k ∑

p→x
2−|p| ≤ 1

2k

Next, we bound the contribution by computations with programs of length |p| > k.
We note that since we are dealing with the monotone UTM, the worst case is that all
programs have length k + 1, and the time taken is only k + 1 (since, by the definition
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of monotone machines, we need at least enough time to read the input). Then, the
contribution from these programs is 2k+1 × (1/(k + 1))× 2−k−1 = 1/(k + 1), meaning
that the total remaining contribution after k PHASEs is no more than 2−k + 1/(k + 1) ≤
2/(k + 1).

So, in order for our contributions to add up to ≥ 1−ε of the total, it suffices to use
k such that

k =

⌊
2

εSKt(x)

⌋
(5.5)

Now, since λ is estimable in polynomial time, we substitute it into equation (4.3) to
obtain

SKt(x)
×≥ 1
|x|O(1)2|x|

(5.6)

Substituting equation (5.6) into equation (5.5), we get

k ≤ O(|x|O(1)2|x|)
ε

(5.7)

So, substituting equation (5.7) into equation (5.1), we finally obtain

# steps ≤ 2O(|x|O(1)2|x|)/ε

(
O(|x|O(1)2|x|)

ε

)
+ 2 ≤ 22O(|x|)

Therefore, SεKt is computable in doubly-exponential time.

5.2 SKt is not efficiently computable

Theorem 5.3. For no ε > 0 does there exist an approximation SεKt of SKt such that
|SεKt/SKt − 1| ≤ ε and SεKt(x) is computable in time polynomial in |x|.

The proof of this theorem relies on the following lemma:

Lemma 5.4. If SεKt is an approximation of SKt as given in Theorem 5.3, then the bound
of Theorem 4.3 applies to SεKt. That is,

L
ΛSεKt
nµ − LΛµ

nµ ≤ 2Dn + 2
√

LΛµ
nµDn

where Dn = O(log n).

Proof of Lemma 5.4. From the definition of SεKt, we have that SεKt ≥ (1−ε)SKt. Then,

Dn(µ||SεKt) := Eµ
[

ln
µ(x1:n)

SεKt(x1:n)

]
≤ Eµ

[
ln

µ(x1:n)

SKt(x1:n)

]
− ln(1−ε) ×= log n

for µ estimable in polynomial time by a semimeasure, where we use equation (4.6) for
the final ‘equality’. Therefore, the bound of Theorem 4.3 applies.
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Proof of Theorem 5.3. Suppose by way of contradiction that SεKt were computable in
polynomial time. Then, the sequence x1:∞ would also be computable in polynomial
time, where

xn =

{
1 if SεKt(0|x1:n−1) ≥ SεKt(1|x1:n−1)

0 if SεKt(0|x1:n−1) < SεKt(1|x1:n−1)

x1:∞ is therefore an adversarial sequence against SεKt: it predicts whichever symbol SεKt
thinks less likely, and breaks ties with 1.

Now, consider an SεKt-based predictor ΛSεKt
that minimises 0-1 loss—that is, one

that predicts the more likely continuation according to SεKt. Further, suppose this
predictor breaks ties with 0. Since the loss bound of Theorem 4.3 applies independently
of tie-breaking method, Lemma 5.4 tells us that ΛSεKt

must make only logarithmically
many errors when predicting x1:∞. However, by design, ΛSεKt

errs every time when
predicting x1:∞. This is a contradiction, showing that SεKt cannot be computable in
polynomial time.

Note that the same proof shows that SεKt cannot be computable in time 2o(x), using
the result on loss bounds for general measures proved in Section 4.2. Unfortunately,
we cannot use this proof technique to show lower bounds on the computation time of
SεFast, since we have no non-trivial predictive results for SFast. However, it does show
that if SFast is computable in polynomial time, then it cannot predict all sequences
computable in polynomial time.

5.3 Predicting f (n)-computable sequences

In this section, we bound the time taken to compute SKt and SFast along a sequence
computable in f (n) time: that is, if the prefixes x1:n of x1:∞ ∈ B∞ are computable
in time f (n) for all n, we bound the time of computing S(x1:n0) and S(x1:n1) for
S ∈ {SεKt, SεFast}.

Theorem 5.5. If x1:∞ is computable in time f (n), then SεFast(x1:n0) and SεFast(x1:n1) are
computable in time O(n4 f (n)), where SεFast is the approximation of SFast of Theorem
5.1.

Proof. Suppose some program px prints x1:∞ in time f (n). Then,

SFast(x1:n) ≥
2−2|px|

f (n)

Substituting this into equation (5.2), we learn that we can compute SεFast(x1:n), by
computing FAST for k PHASEs where

k ≤
⌊

log(22|px| f (n)/ε)
⌋
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Substituting this into equation (5.1) gives

# steps ≤ 2log(22|px | f (n)/ε)(log(22|px| f (n)/ε)− 1) + 2

= O( f (n))

Therefore, we only require O( f (n)) many steps of the FAST algorithm to compute
SεFast(x1:n). To prove that it only takes O(n4 f (n)) steps to compute SεFast(x1:nb) for any
b ∈ B requires some more careful analysis.

Let 〈n〉 be a prefix-free coding of the natural numbers in 2 log n bits. Then, if
b ∈ B, then there is some program prefix pb such that pb〈n〉q runs program q until
it prints n symbols on the output tape, after which it stops running q, prints b, and
then halts. In addition to running q (possibly slowed down by a constant factor), it
must run some sort of timer to count down to n. This involves reading and writing
the integers 1 to n, which takes O(n log n) time. Therefore, pb〈n〉px prints x1:nb in time
O( f (n)) + O(n log n), so

SFast(x1:nb) ≥ 2−2|pb〈n〉px|

O( f (n)) + O(n log n)

=
1

O( f (n)) + O(n log n)
1

n422|pb|+2|px|

=
1

O(n4 f (n))

since, because f (n) ≥ n, n4 f (n) ≥ n log n. Using equations (5.2) and (5.1) therefore
gives that we only need O(n4 f (n)) timesteps to compute SεFast(x1:nb).

Theorem 5.6. If x1:∞ is computable in time f (n), then SεKt(x1:n0) and SεKt(x1:n1) are
computable in time 2O(n2 f (n)), where SεKt is the approximation of SKt of Theorem 5.2.

Proof. The proof is almost identical to the proof of Theorem 5.5: supposing that px

prints x1:n in time f (n), we have

SKt(x1:n) ≥
2−|p

x|

f (n)

The difference is that we substitute this into equation (5.5), getting

k ≤
⌊

2|p
x|+1 f (n)/ε

⌋
and substitution into equation (5.1) now gives

# steps ≤ 22|p
x |+1 f (n)/ε

(
2|p

x|+1 f (n)/ε− 1
)
+ 2

= 2O( f (n))

The other difference is that because we only penalise the length of the program, instead
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of twice the length of the program,

SKt(x1:nb) ≥ 2−|p
b〈n〉px|

O( f (n)) + O(n log n)

=
1

O( f (n)) + O(n log n)
1

n22|pb|+2|px|

=
1

O(n2 f (n))

Therefore, we can compute SεKt(x1:n0) and SεKt(x1:n1) in time 2O(n2 f (n)).



Chapter 6

Reinforcement Learning

We can adapt SKt (the only speed prior that we were able to prove good predictive
results for) into a chronological conditional semimeasure for use in reinforcement
learning, writing

S(e1:t||a1:∞) := ∑
p: (p,a1:t)→e1:t

2−|p|

t((p, a1:t), e1:t)

where t((p, a1:t), e1:t) denotes the number of timesteps it takes for the mixed-input
UTM U to print e1:t given input (p, a1:t).

However, we focus on a generalisation of the speed environment. We note that all
the predictive results of SKt came from the relation

SKt(x) ≥ wµ
gµ(|x|)

µ(x) (6.1)

where µ was an environment of interest, and gµ was a monotonically increasing,
superlinear, and subexponential function1. Also, measures like this are known to
converge to the true distribution if gµ(|x|)

×≤ exp(
√

n/ log n) [Ryabko and Hutter
2007], in the sense that the conditional probabilities converge to the true conditional
probabilities ‘on average’. We therefore consider the speed mixture over a classM of
chronological conditional measures:

Definition 6.1 (Speed mixture).

SM(e1:t||a1:∞) := ∑
ν∈M

wν
gν(t)

ν(e1:t||a1:∞)

where ∑ν∈M wν ≤ 1.

1Note that this is not strictly true: we instead had that SKt(x) ≥ wµµ(x)/(gµ(|x|)−O(1) logµ(x))O(1)

as shown in (4.3). However, the −O(1) logµ(x) term was less than O(1)|x| in expectation, so (6.1) would
have sufficed to show these results. Additionally, if µ is estimable in polynomial time by ν, then the
denominator of the fraction ν must be able to be printed in polynomial time. Since the number of the
digits of the denominator is bounded by −2 logν(x), which must be bounded by a polynomial in |x|, and
since logµ(x) ≤ logν(x) + O(1), −O(1) logµ(x) can be deterministically bounded by a polynomial in
|x|, showing that (4.3) can be rewritten as (6.1).
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38 Reinforcement Learning

We also consider the speed mixture agent πSM that maximises expected reward
sum, where the expectation is with respect to SM.

6.1 Self-optimisingness

We might wish that the generalisation of AIXI, our agent πSM is self-optimising. In
this section, we show that under certain conditions, the policy πSM (which we call the
speed mixture agent) is self-optimising in every environment inM.

6.1.1 Finite lifetime case

We consider the sequence of policies πSM
m for m = 1, 2, 3, . . . that maximise VπSM

1m
respectively. Our main result is that this sequence is self-optimising inM if there is
any sequence of policies that is exponentially quickly self-optimising inM, and ifM
is sufficiently nice (in a sense that will be explained in the theorem). Recall that as
in Definition 2.17, we will be considering the agent’s behaviour as m → ∞. In other
words, we will not be looking at the behaviour of a single agent as time goes to infinity,
but rather at the behaviour of a family of agents as their lifetime goes to infinity. Before
proving this, we first state and prove some useful lemmas. These lemmas and their
proofs are actually identical to those in [Hutter 2005, Chapter 5.4] with the replacement
wν 7→ wν/gν(m), but we give their proofs here for clarity and completeness.

Our first lemma shows that the value obtained by policy π in the speed mixture
environment is a linear combination of the value it obtains in all environments inM.

Lemma 6.2 (Linearity of value (finite lifetime)).

VπSM
1m = ∑

ν∈M

wν
gν(m)

Vπν
1m

Proof.

VπSM
1m = ∑

e1:m

(r1 + · · ·+ rm)SM(e1:m||a1:m)

= ∑
e1:m

(r1 + · · ·+ rm) ∑
ν∈M

wν
gν(m)

ν(e1:m||a1:m)

= ∑
ν∈M

wν
gν(m) ∑

e1:m

(r1 + · · ·+ rm)ν(e1:m||a1:m)

= ∑
ν∈M

wν
gν(m)

Vπν
1m

where the action sequence a is generated by the policy π .

Next, we show a technical lemma that lets us bound the difference in value of
the speed mixture agent and the optimal agent in some environment in terms of the
difference of values of some other agent and the optimal agent in each environment of
M.
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Lemma 6.3 (Value difference relation (finite lifetime)). For any policy π , let

Vπνmν
1m −Vπν

1m =: ∆ν(π)

Then,

Vπνmν
1m −Vπ

SM
m ν

1m ≤ gν(m)

wν ∑
ρ∈M

wρ
gρ(m)

∆ρ(π)

Proof.

wν
gν(m)

(
Vπνmν

1m −Vπ
SM
m ν

1m

)
≤ ∑
ρ∈M

wρ
gρ(m)

(
Vπρρ

1m −Vπ
SM
m ρ

1m

)

=

(
∑
ρ∈M

wρ
gρ(m)

Vπ
ρ
mρ

1m

)
−
(

∑
ρ∈M

wρ
gρ(m)

Vπ
SM
m ρ

1m

)

=

(
∑
ρ∈M

wρ
gρ(m)

Vπ
ρ
mρ

1m

)
−Vπ

SM
m SM

1m (6.2)

≤
(

∑
ρ∈M

wρ
gρ(m)

Vπ
ρ
mρ

1m

)
−VπSM

1m (6.3)

= ∑
ρ∈M

wρ
gρ(m)

(
Vπ

ρ
mρ

1m −Vπρ
1m

)
(6.4)

= ∑
ρ∈M

wρ
gρ(m)

∆ρ(π)

where (6.2) and (6.4) use Lemma 6.2, and (6.3) uses the optimality of πSM
m in SM.

Theorem 6.4 (Self-optimising theorem for finite lifetime). Let πm be a sequence of
policies, and define

1
m

(
Vπνmν

1m −Vπmν
1m

)
=: δν(m)

Suppose that for every µ,ν ∈ M, gµ(m)δν(m) is bounded by some constant that
depends on µ but not on ν or m, and that gµ(m)δν(m)→ 0 (which implies that for all
ν ∈ M, δν(m)→ 0). Then, in every environment µ ∈ M,

lim
m→∞ 1

m

(
Vπ

µ
mµ

1m −Vπ
SM
m µ

1m

)
= 0

Note that the condition that gµ(m)δν(m) is bounded by a constant independent
of ν and m is rather restrictive in infinite environment classes. If the functions gµ are
polynomial, it requires that the functions δν are all exponentially (or superpolynomially)
decaying with bounded multiplicative constants. This condition would be violated if,
for example, (indexing our environments with natural numbers) δνn(m) = n exp(−m)
or δνn(m) = exp(−m) + n exp(−2m).
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Proof. Using Lemma 6.3, where ∆ν(πm) = mδν(m), we have

1
m

(
Vπ

µ
mµ

1m −Vπ
SM
m µ

1m

)
≤ gµ(m)

wµ ∑
ν∈M

wν
gν(m)

δν(m)

≤ 1
wµ ∑

ν∈M
wνgµ(m)δν(m)

Now, gµ(m) is subexponential, meaning that for all ν, gµ(m)δν(m) → 0 as m → ∞.
Since gµ(m)δν(m) is bounded by a constant independent of ν or m, we may use a result
on the convergence of averages to show that ∑ν∈M wνgµ(m)δν(m)→ 0 [Hutter 2005,
Lemma 5.28 (ii)], since ∑ν∈M wν ≤ 1. This proves the theorem.

6.1.2 Infinite lifetime case

We next consider the undiscounted infinite lifetime case, where at timestep k agents
only consider rewards received up to timestep mk. Therefore, we define the policy πνk
as that which maximises Vπν

kmk
, the ν-expected reward sum between timesteps k and

mk.
In the infinite lifetime case, the desirable property of being self-optimising is that

1
mk − k + 1

Vπ
SM
k µ

kmk

k→∞−−−→ 1
mk − k + 1

Vπ
µ
k µ

kmk

Although this is similar to the definition for finite lifetimes, there are crucial differences:
firstly, we are genuinely talking about the behaviour of a single agent as it goes through
time, rather than that of a family of agents as one of their parameters increases, and
secondly, we are not talking about the average value that the agent actually receives,
but rather the average value that it plans to receive (despite the fact that the agent may
very well change its plan later in order to receive large rewards at time mk + 1, for
example).

We will show that our agent is self-optimising in environment classes that admit
self-optimising policies, but first, we show some preliminary lemmas of the same
flavour as in Subsection 6.1.1.

Lemma 6.5 (Linearity of value (infinite lifetime)). For all policies π ,

VπSM
kmk

= ∑
ν∈M

wk
ν

gν(mk)
Vπν

kmk

where

wk
ν = wν

ν(e<k||a<k)

SM(e<k||a<k)

Proof.

VπSM
kmk

= ∑
ek:mk

Rk:mk SM(ek:mk |e<k||a1:mk)
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=
1

SM(e<k||a<k)
∑

ek:mk

Rk:mk SM(e1:mk ||a1:mk)

=
1

SM(e<k||a<k)
∑

ek:mk

Rk:mk ∑
ν∈M

wν
gν(mk)

ν(e1:mk ||a1:mk)

=
1

SM(e<k||a<k)
∑
ν∈M

wν
gν(mk)

∑
ek:mk

Rk:mkν(ek:mk |e<k||a1:mk)ν(e<k||a<k)

= ∑
ν∈M

wν
gν(mk)

ν(e<k||a<k)

SM(e<k||a<k)
∑

ek:mk

Rk:mkν(ek:mk |e<k||a1:mk)

= ∑
ν∈M

wk
ν

gν(mk)
Vπν

kmk

where all actions are generated by π , and Rk:mk is an abbreviation for rk + · · ·+ rmk .

Lemma 6.6 (Value difference relation (infinite lifetime)). For any sequence of policies
πk, let

Vπνk ν

kmk
−Vπkν

kmk
=: ∆ν(πk)

Then,

Vπνk ν

kmk
−Vπ

SM
k ν

kmk
≤ gν(mk)

wk
ν

∑
ρ∈M

wk
ρ

gρ(mk)
∆ρ(πk)

Proof.

wk
ν

gν(mk)
(Vπνk ν

kmk
−Vπ

SM
k ν

kmk
) ≤ ∑

ρ∈M

wk
ρ

gρ(mk)

(
Vπ

ρ
k ρ

kmk
−Vπ

SM
k ρ

kmk

)

=

(
∑
ρ∈M

wk
ρ

gρ(mk)
Vπ

ρ
k ρ

kmk

)
−Vπ

SM
k SM

kmk
(6.5)

≤
(

∑
ρ∈M

wk
ρ

gρ(mk)
Vπ

ρ
k ρ

kmk

)
−Vπk SM

kmk
(6.6)

= ∑
ρ∈M

wk
ρ

gρ(mk)

(
Vπ

ρ
k ρ

kmk
−Vπkρ

kmk

)
(6.7)

= ∑
ρ∈M

wk
ρ

gρ(mk)
∆ρ(πk)

where (6.5) and (6.7) use Lemma 6.5, and (6.6) uses the optimality of πSM
k in SM.

Theorem 6.7 (Self-optimising theorem for infinite lifetime). Suppose that there exists a
sequence of policies πk such that for all ν ∈ M,

1
mk − k + 1

(
Vπνk ν

kmk
−Vπkν

kmk

)
= δν(k)
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where for all ν,ρ ∈ M, δν(k) → 0 with ν-probability 1, gρ(k)δν(k)1/2 ≤ cν, and
gρ(mk)δν(k)1/4 ≤ c′ν, where cν and c′ν are constants depending only on ν. Then for all
µ ∈ M,

lim
k→∞

1
mk − k + 1

(
Vπ

µ
k µ

kmk
−Vπ

SM
k µ

kmk

)
= 0 with µ-probability 1

The conditions of this theorem are similar to that of Theorem 6.4. One impor-
tant difference is that there, we required that gρδν was bounded by a constant only
depending on ρ, while in this theorem, we replace δν by δ1/2

ν and demand that the
product be bounded by a constant only depending on ν. This rules out (for instance) δν
being exponentially decaying and the functions gρ being polynomials of unbounded
degree, or even of bounded degree but unbounded constants. We also have a condition
on mk, which would be satisfied if (for instance) the functions δν are exponentially
decaying, the functions gν are polynomials, and mk is polynomial in k. This is not
such a severe restriction: mk − k + 1 is analogous to the effective horizon in the context
of discounting2, and discounting schemes typically have effective horizons that only
grow polynomially: in fact, the most commonly used discounting scheme, geometric
discounting3, has a constant effective horizon. Table 6.1 has a summary of discount
schemes and their effective horizons.

Discount scheme Discount factor Effective horizon
Geometric γk d− log 2/ logγe
Power k−1−β, β > 0 O(k)
Near-harmonic k−1(ln k)−1−β, β > 0 k21/β

Table 6.1: Discount schemes and their effective horizons

Proof. Similarly to our proof of Theorem 6.4, we use Lemma 6.6 where ∆ν(πk) =
δν(k)/(mk − k + 1) to write

1
mk − k + 1

(
Vπ

µ
k µ

kmk
−Vπ

SM
k µ

kmk

)
≤ gµ(mk)

wk
µ

∑
ν∈M

wk
ν

gν(mk)
δν(k)

≤ gµ(mk)

wk
µ

∑
ν∈M

wk
νδν(k) (6.8)

Next, we convert this to an equivalent expression for the Bayesian mixture over
our class ξM(e<k||a<k) = ∑ν∈M wνν(e<k||a<k), at which point we will be able to use a
slightly different proof of self-optimisingness of these mixture agents to our advantage.
Now,

2The effective horizon hk is the first timestep such that Γk+hk
≤ Γk/2: that is, it measures the time

after which half the possible discount-weighted reward available after time k is no longer available, and
roughly tracks how farsighted the agent is.

3This is the only type mentioned in the classic reference on reinforcement learning, Sutton and Barto
[1998], or the standard introduction to artificial intelligence, Russell and Norvig [2009].
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wk
νδν(k) = wνν(e<k||a<k)

(
∑
ρ∈M

wρ
gρ(k− 1)

δν(k)−1ρ(e<k||a<k)

)−1

≤ wνν(e<k||a<k)

(
∑
ρ∈M

wρδν(k)−1/2c−1
ν ρ(e<k||a<k)

)−1

= cνzk
νδν(k)

1/2

where zk
ν = wνν(e<k||a<k)/ξM(e<k||a<k).

Next, we note that by assumption

gµ(mk)δν(k)1/2 ≤ c′µδν(k)
1/4

and that

1
wk
µ

= ∑
ν∈M

wν
gν(k− 1)

ν(e<k||a<k)

µ(e<k||a<k)

< ∑
ν∈M

wν
ν(e<k||a<k)

µ(e<k||a<k)

=
1
zk
µ

Therefore,

gµ(mk)

wk
µ

∑
ν∈M

wk
νδν(k) <

c′µ
zk
µ

∑
ν∈M

cνzk
νδν(k)

1/4 (6.9)

Using the self-optimising result for Bayesian mixtures shown in Hutter [2005, Theorem
5.34], we have that the right hand side of (6.9) goes to 0, since δν(k) is bounded above
by 1, the maximum reward. Therefore, (6.8) and (6.9) together give us our desired
result.
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Chapter 7

Conclusion

7.1 Summary of thesis

In this thesis, we have defined the speed prior SKt, and showed that it is able to
predict efficiently computable sequences with few errors. Unfortunately, we were only
able to bound the computation time by 22O(n)

(although this bound was reduced to
2nO(1)

for sequences that are computable in polynomial time), and proved that SKt is
not computable in sub-exponential time. Although we were not able to prove any
prediction results for Schmidhuber’s speed prior SFast, we showed time complexity
bounds for it that were exponentially better than those for SKt. We also showed that in
certain cases, a variant of SKt was self-optimising in the reinforcement learning setting.

7.2 Outlook

Unsurprisingly, there are many avenues of future research left to explore. First of all,
although we were unable to show any positive prediction results about SFast, we were
also unable to show that it fails at prediction where SKt succeeds. It would therefore be
of interest to show any prediction results about SFast, positive or negative.

Secondly, there is an exponential gap between our time complexity lower bounds
and upper bounds for SKt. It would therefore be of interest to know whether doubly-
exponential time is required to compute SKt in the worst case, or whether it could be
computed in (comparatively) merely exponential time. It would similarly be of interest
to know whether SFast is computable in polynomial time (although an argument similar
to the proof of Theorem 5.3 establishes that this cannot be true if SFast successfully
predicts all polynomial-time computable sequences).

Another area of further research is in the RL domain. The self-optimising results
we have shown here have had strong conditions on the environment class and the rate
of self-optimisingness that we require for some other policy in the class, limiting their
application. There is therefore room to weaken these conditions and see if the results
still hold. It would also be worth knowing if there are in fact any environment classes
that fit the conditions of Theorems 6.4 and 6.7, or whether these theorems are in fact
vacuous.

It would also be desirable to prove results about the discounted infinite lifetime case,
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since this is the case normally considered in reinforcement learning. Unfortunately,
since the functions gν increase to infinity and are bounded below by 1,

VπSM
kγ =

1
Γk

lim
m→∞ ∑

ek:m

(γkrk + · · ·+γmrm)SM(ek:m|e<k||a1:m)

=
1
Γk

lim
m→∞ ∑

ν∈M

wν
gν(m) ∑

ek:m

(γkrk + · · ·+γmrm)ν(ek:m|e<k||a1:m)

≤ 1
Γk

lim
m→∞ ∑

ν∈M

wν
gν(m)

= 0, independently of π .

We must therefore use a different value function in this case, in order for it to tell the
difference between policies.

Indeed, the definitions of value that we have been using are unsatisfactory for
semimeasures, because semimeasures take into account the possibility of the ‘end of
the world’: µ(e1:k||a1:m)− ∑ek+1

µ(e1:kek+1||a1:m) can be thought of as the probability of
the environment ending after outputting e1:k. The environment might have positive
probability of percept sequences that give high reward before simply ending with-
out continuation, and the probability of these sequences is not accounted for in the
definitions we have been using.

A more satisfactory recursive definition of the upcoming value at time k is given by
[Leike and Hutter 2015b]:

Wπµ
km =

m

∑
t=k

∑
ek:t

rtµ(ek:t|e<k||a1:t) (7.1)

where for all t > k, at = π(æ<t). This expression takes into account reward that
comes from environments that ‘end early’, counting the probability of rewards as they
come. Note that this can be easily extended to the discounted case, and that when µ
is a measure, Wπµ

km = Vπµ
km . Although we were unable to prove any results using this

definition, we feel that results that did use it would be more satisfactory.
Finally, our prior is closely related to the prior µα,γ defined in Vovk [1989], which

predicts so-called ‘(α,γ)-computable’ sequences. Ifα and γ are functions N→ N, then
a measure ν is said to be (α,γ)-simple if there exists some ‘program’ πν ∈ B∞ such
that the UTM with input x outputs ν(x) in time ≤ γ(|x|) by reading onlyα(|x|) bits of
πν. Vovk proves that ifα is logarithmic and γ is polynomial, and if bothα and γ are
computable in polynomial time, then there exists a measure µα,γ which is computable
in polynomial time that predicts sequences drawn from (α,γ)-simple measures.

SKt and µα,γ are similar in spirit: both attempt to predict sequences sampled from
an efficiently computable measure. It would therefore be interesting to determine
whether SKt or SFast is able to predict (α,γ)-simple measures, and to compare other
properties of µ(α,γ) and the speed priors.



Appendix A

List of Notation

Symbol Meaning
:= defined to be equal to
≈ approximately equal to (informal)
#A cardinality of set A
dxe ceiling of x ∈ R: smallest integer ≥ x
bxc floor of x ∈ R: largest integer ≤ x
i, k, n, t, m natural numbers
N set of natural numbers excluding 0
Z set of integers
R set of real numbers
B binary alphabet {0, 1}
A, E finite alphabets
X generic finite alphabet
X n set of strings in X of length n
X ∗ set of finite strings in X
X∞ set of infinite strings in X
x, y, p, q strings of finite length
ε empty string
|x| length of string x
xy concatenation of strings x and y
xn nth symbol of string x
xm:n := xmxm+1 · · · xn if m ≤ n, ε otherwise
x<n := x1:n−1

x1:∞ infinite string
x v y string x is a prefix of string y, including the case

x = y
x @ y string x is a proper prefix of string y, where x 6= y
〈·〉 prefix-free coding
f , g functions
argmaxx f (x, y) some x such that f (x, y) is maximised
argminx f (x, y) some x such that f (x, y) is minimised

(continued on next page)
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48 List of Notation

(continued from previous page)

Symbol Meaning
f (n) = O(g(n)) for some constant c > 0 and n0 ∈ N, for all n > n0,

f (n) ≤ cg(n)
a = f (O(g1(n)), O(g2(n)), . . . ) there exists g′1(n) = O(g1(n)), g′2(n) = O(g2(n)),

. . . , such that a ≤ f (g′1(n), g′2(n), . . . )
f (n) = o(g(n)) limn→∞ f (n)/g(n) = 0
f (n)

×≤ g(n) f (n) = O(g(n)) when f , g : N→ R
f (x)

×≤ g(x) f (x) ≤ cg(x) for some constant c > 0 when f , g :
B∗ → R

f ×= g f
×≤ g and g

×≤ f
log logarithm base 2
ln logarithm base e
ε small positive real number
T Turing machine (either monotone or mixed-input)
U universal Turing machine

p T−→
≤t

x program p computes x on monotone machine T
in ≤ t steps, where omitting the ≤ t removes that
restriction, and omitting T means that T = U

(p, q) T−→ x program pair (p, q) computes x on mixed-input
machine T

p→i x program p computes x in phase i of FAST

t(T, p, x) number of steps taken for program p to compute x
on machine T, where omitting T means that T = U

KT(x) length of shortest program that prints x on prefix
machine T

KmT(x) length of shortest program that prints x on mono-
tone machine T

KtT(x) minp{|p| + log t(T, p, x) : p T−→ x, and T takes
t(T, p, x) steps to print x on input p}

K(x) := KU(x)
Km(x) := KmU(x)
Kt(x) := KtU(x)
Km-cost(p, x) := |p| if p→ x, otherwise ∞—minimand of Km
Kt-cost(p, x) := |p|+ log t(p, x)—minimand of Kt
M Solomonoff’s universal semimeasure
SFast the speed prior, as originally defined by Schmid-

huber
SKt our speed prior
P some semimeasure, or sometimes measure
Pε an estimate of predictive measure P with relative

accuracy ε, |Pε/P− 1| ≤ ε
(continued on next page)



49

(continued from previous page)

Symbol Meaning
ν,ρ some semimeasure, or sometimes measure
µ the true environmental measure
λ the uniform measure λ(x) := 2−|x|

M countable set of semimeasures
ξM Bayesian mixture over environmental classM
Eρ expectation value w.r.t. the distribution ρ
Hµ(x1:n) binary entropy of the random variable x1:n with

respect to µ: Hµ(x1:n) = Eµ[logµ(x1:n)]
Dn(µ||ρ) relative entropy of ρ w.r.t. the true distribu-

tion µ over the first n symbols: Dn(µ||ρ) :=
Eµ [ln(µ(x1:n)/ρ(x1:n))]

`(xt, yt) loss incurred when predicting yt and the next sym-
bol is xt

Λ some way of predicting sequences
LΛ

nν ν-expected cumulative loss in steps 1 through n of
predictor Λ

Λρ predictor with minimal ρ-expected loss
æk:t := akekak+1ek+1 · · · atet

π a policy, π : (A× E)∗ → A
πνm optimal policy in environment ν with lifetime m
πνk optimal policy in environment ν at time k
Vπν

km expected total reward received between
timesteps k and m, Vπν

km = ∑ek:m
(rk + · · · +

rm)ν(ek:m|e<k||a1:k) where at = π(æ<t) for t ≥ k
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