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The Laplacian of a function f : Rn → R is the sum of its second derivatives
along each dimension:

∆f(x) =
∑
i

∂2f(x)

∂x2
i

.

In this document, I will show a proof of the following theorem:

Theorem 1. The Laplacian of a function at point x is the limit of the difference
between the average value of the function on a sphere of radius r around x, and
the value of the function at x itself, multiplied by 2n/r2 where n is the dimension
of the space. That is,

∆f(x) = lim
r→0

2n

r2

(∫
S(x,r)

f(x′) dσ(x′)

Voln−1(S(x, r))
− f(x)

)

where S(x, r) is the sphere centred at x at radius r, σ is the (n−1)-dimensional
surface measure on the sphere, and Voln−1 is the (n−1)-dimensional volume of
a set.

This theorem closely connects the Laplacian operator to the graph Laplacian
discussed in e.g. [1], motivating the definition for the latter. I believe that I came
across a proof of this on the internet at some point in the past, but have not
been able to find this proof anywhere, and so endeavoured to provide it myself.

As motivation for the theorem, consider the case when n = 1. Functions
with a positive second derivative are convex: the value at a point is less than
the average of the values at ‘neighbouring points’, and a similar thing is true
for functions with a negative second derivative. It also relates to the ‘spherical
mean property’ of harmonic functions (that is, functions f that satisfy ∆f = 0).

The following lemma deals with the gamma function, which will pop up in
the proof of our main theorem only to eventually factor out.

Lemma 2.

2

∫ ∞

0

yn exp(−y2) dy = Γ

(
n+ 1

2

)
.
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Proof. Use variable substitution. Let t = y2. Then, dt = 2y dy. The bounds of
integration do not change.

2

∫ ∞

0

yn exp(−y2) dy =

∫ ∞

0

yn−1 exp(−y2)× 2y dy

=

∫ ∞

0

t(n−1)/2 exp(−t) dt

= Γ

(
n+ 1

2

)
.

The next lemma establishes the behaviour of integrals of monomials over the
surface of a sphere. We will use it in the main proof when we write a Taylor
expansion of f around x, and evaluate the integral of each monomial separately.

Lemma 3. When mi is an even natural number for i between 1 and n,∫
S(0,1)

n∏
i=1

ymi
i dσ(y) =

2
∏n

i=1 Γ((mi + 1)/2)

Γ (
∑n

i=1((mi + 1)/2))
. (1)

When any mi is odd, the left-hand side of equation 1 vanishes.

Proof. Adapted from [2]. First: when any mi is odd, the left-hand side of
equation 1 vanishes by symmetry, so we need only consider the case when each
mi is even. Consider the integral

I =

∫
Rn

∏
i

ymi
i exp

(
−|y|2

)
dy

We will find our result by evaluating I in rectangular and polar coordinates,
and comparing the results. First, in rectangular coordinates,

I =

∫
Rn

∏
i

(
ymi
i exp

(
−y2i

))
dy

=
∏
i

∫ ∞

−∞
ymi
i exp

(
−y2i

)
dyi

Since mi is even, we can restrict our domain to [0,∞):

=
∏
i

2

∫ ∞

0

ymi
i exp

(
−y2i

)
dyi

=
∏
i

Γ

(
mi + 1

2

)
, (2)

using lemma 2.
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Next, we evaluate I in polar coordinates, by integrating over rays thru the
unit sphere S(0, 1). Given an infinitesimal patch of area dσ on the unit sphere,
once that patch is projected out to a distance r from the origin, its (n−1)-volume
is multiplied by rn−1, and it has thickness dr, meaning that the differential unit
of volume will be rn−1 dr dσ. So,

I =

∫
S(0,1)

∫ ∞

0

∏
i

(ryi)
mi exp

(
−r2

)
rn−1 dr dσ(y)

=

(∫ ∞

0

r(
∑

i mi)+n−1 exp
(
−r2

)
dr

)(∫
S(0,1)

∏
i

ymi
i dσ(y)

)

=
1

2
Γ

(∑
i

mi + 1

2

)∫
S(0,1)

∏
i

ymi
i dσ(y), (3)

again using lemma 2.
Comparing equation 2 and equation 3, we get equation 1.

We are now ready to prove our main theorem.

Proof of theorem 1. First, note that based on the scaling of the surface volume
of spheres, Voln−1(S(x, r)) = rn−1Voln−1(S(0, 1)), which we can evaluate as the
integral of the constant monomial:

Voln−1(S(0, 1)) =

∫
S(0,1)

∏
i

y0i dσ(y)

=
2 (Γ(1/2))

n

Γ(n/2)

=
2πn/2

Γ(n/2)
. (4)

Next, note that we can use Taylor’s theorem to write

f(x′) = f(x) +
∑
i

∂f(x)

∂xi
(x′

i − xi) +
∑
i<j

∂2f(x)

∂xi∂xj
(x′

i − xi)(x
′
j − xj)

+
∑
i

1

2

∂2f(x)

∂x2
i

(x′
i − xi)

2 + h(x′)
∑
i

(x′
i − xi)

2,

where h(x′) → 0 as x′ → x.
We can integrate this Taylor expansion over S(x, r) using lemma 3:∫

S(x,r)

f(x′) dσ(x′)

=

∫
S(0,r)

f(x+ y′) dσ(y′)
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Let y = y′/r. Then dσ(y′) = rn−1 dσ(y).

=

∫
S(0,1)

f(x+ ry)rn−1 dσ(y)

= rn−1

∫
S(0,1)

f(x) dσ(y) +
∑
i

∂f(x)

∂xi
rn
∫
S(0,1)

yi dσ(y)

+
∑
i<j

∂2f(x)

∂xi∂xj
rn+1

∫
S(0,1)

yiyj dσ(y) +
∑
i

1

2

∂2f(x)

∂x2
i

rn+1

∫
S(0,1)

y2i dσ(y)

+ rn+1

∫
S(0,1)

h(x+ ry)
∑
i

y2i dσ(y)

= f(x)rn−1Voln−1(S(0, 1)) + 0 + 0 +
∑
i

1

2

∂2f(x)

∂x2
i

rn+1 2Γ(3/2)Γ(1/2)
n−1

Γ(1 + n/2)

+ rn+1

∫
S(0,1)

h(x+ ry) dσ(y)

= f(x)Voln−1(S(x, r)) + rn+1 (1/2)Γ(1/2)
n

(n/2)Γ(n/2)
∆f(x)

+ rn+1

∫
S(0,1)

h(x+ ry) dσ(y)

= f(x)Voln−1(S(x, r)) + rn+1 πn/2

nΓ(n/2)
∆f(x) + rn+1

∫
S(0,1)

h(x+ ry) dσ(y).

(5)

Therefore, we can now evaluate the main expression, using equation 5 to
evaluate the integral and equation 4 to evaluate Voln−1(S(x, r)):

lim
r→0

2n

r2

(∫
S(x,r)

f(x′) dσ(x′)

Voln−1(S(x, r))
− f(x)

)

= lim
r→0

2n

r2

(
f(x) + rn+1 πn/2

nΓ(n/2)Voln−1(S(x, r))
∆f(x)

+
rn+1

Voln−1(S(x, r))

∫
S(0,1)

h(x+ ry) dσ(y)− f(x)

)

= lim
r→0

2n

r2

(
rn+1πn/2

nΓ(n/2)rn−12πn/2/Γ(n/2)
∆f(x)

+
rn+1

rn−12πn/2/Γ(n/2)

∫
S(0,1)

h(x+ ry) dσ(y)

)

= lim
r→0

2n

r2

(
r2

2n
∆f(x) +

r2Γ(n/2)

2πn/2

∫
S(0,1)

h(x+ ry) dσ(y)

)
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= ∆f(x) + lim
r→0

nΓ(n/2)

πn/2

∫
S(0,1)

h(x+ ry) dσ(y)

= ∆f(x),

since as r → 0, h(x+ ry) → 0.
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